Data-driven Energy Consumption Modelling for Electric Micromobility using an Open Dataset
- URL: http://arxiv.org/abs/2403.17632v2
- Date: Mon, 19 Aug 2024 16:07:11 GMT
- Title: Data-driven Energy Consumption Modelling for Electric Micromobility using an Open Dataset
- Authors: Yue Ding, Sen Yan, Maqsood Hussain Shah, Hongyuan Fang, Ji Li, Mingming Liu,
- Abstract summary: This paper presents an open dataset for energy modelling research related to E-Scooters and E-Bikes.
We provide a comprehensive analysis of energy consumption modelling based on the dataset using a set of representative machine learning algorithms.
Our results demonstrate a notable advantage for data-driven models in comparison to the corresponding mathematical models for estimating energy consumption.
- Score: 6.000804135802873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The escalating challenges of traffic congestion and environmental degradation underscore the critical importance of embracing E-Mobility solutions in urban spaces. In particular, micro E-Mobility tools such as E-scooters and E-bikes, play a pivotal role in this transition, offering sustainable alternatives for urban commuters. However, the energy consumption patterns for these tools are a critical aspect that impacts their effectiveness in real-world scenarios and is essential for trip planning and boosting user confidence in using these. To this effect, recent studies have utilised physical models customised for specific mobility tools and conditions, but these models struggle with generalization and effectiveness in real-world scenarios due to a notable absence of open datasets for thorough model evaluation and verification. To fill this gap, our work presents an open dataset, collected in Dublin, Ireland, specifically designed for energy modelling research related to E-Scooters and E-Bikes. Furthermore, we provide a comprehensive analysis of energy consumption modelling based on the dataset using a set of representative machine learning algorithms and compare their performance against the contemporary mathematical models as a baseline. Our results demonstrate a notable advantage for data-driven models in comparison to the corresponding mathematical models for estimating energy consumption. Specifically, data-driven models outperform physical models in accuracy by up to 83.83% for E-Bikes and 82.16% for E-Scooters based on an in-depth analysis of the dataset under certain assumptions.
Related papers
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network architecture to model link-level bicycling volumes.
We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data.
Our results show that the GCN model performs better than these traditional models in predicting AADB counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Evaluating the Energy Efficiency of Few-Shot Learning for Object
Detection in Industrial Settings [6.611985866622974]
This paper presents a finetuning approach to adapt standard object detection models to downstream tasks.
Case study and evaluation of the energy demands of the developed models are presented.
Finally, this paper introduces a novel way to quantify this trade-off through a customized Efficiency Factor metric.
arXiv Detail & Related papers (2024-03-11T11:41:30Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
arXiv Detail & Related papers (2023-09-19T05:44:18Z) - DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings [1.2891210250935148]
This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption.
The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007.
arXiv Detail & Related papers (2023-09-06T11:02:53Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - A Comparative Study on Energy Consumption Models for Drones [4.660172505713055]
We benchmark the five most popular energy consumption models for drones derived from their physical behaviours.
We propose a novel data-driven energy model using the Long Short-Term Memory (LSTM) based deep learning architecture.
Our experimental results have shown that the LSTM based approach can easily outperform other mathematical models for the dataset under study.
arXiv Detail & Related papers (2022-05-30T23:05:32Z) - A Deep Learning Approach for Macroscopic Energy Consumption Prediction
with Microscopic Quality for Electric Vehicles [0.0]
This paper presents a machine learning approach to model the electric consumption of electric vehicles at macroscopic level.
We show that although all internal dynamics that affect energy consumption are masked, it is possible to learn aggregate-level energy consumption values quite accurately.
This model has been deployed and integrated within POLARIS Transportation System Simulation Tool to support real-time behavioral transportation models.
arXiv Detail & Related papers (2021-11-25T01:20:32Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
Large-scale deployment of smart meters has motivated increasing studies to explore disaggregated daily load patterns.
This paper aims to shed light on the mechanisms by which electricity consumption patterns exhibit variability.
arXiv Detail & Related papers (2021-02-16T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.