論文の概要: S+t-SNE - Bringing dimensionality reduction to data streams
- arxiv url: http://arxiv.org/abs/2403.17643v1
- Date: Tue, 26 Mar 2024 12:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 15:37:32.143017
- Title: S+t-SNE - Bringing dimensionality reduction to data streams
- Title(参考訳): S+t-SNE - データストリームに次元還元をもたらす
- Authors: Pedro C. Vieira, João P. Montrezol, João T. Vieira, João Gama,
- Abstract要約: S+t-SNEは、無限のデータストリームを処理するように設計されたt-SNEアルゴリズムの適応である。
各ステップで最も重要なポイントを選択することで、アルゴリズムは情報的な視覚化を維持しながらスケーラビリティを確保する。
- 参考スコア(独自算出の注目度): 1.7186863539230333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present S+t-SNE, an adaptation of the t-SNE algorithm designed to handle infinite data streams. The core idea behind S+t-SNE is to update the t-SNE embedding incrementally as new data arrives, ensuring scalability and adaptability to handle streaming scenarios. By selecting the most important points at each step, the algorithm ensures scalability while keeping informative visualisations. Employing a blind method for drift management adjusts the embedding space, facilitating continuous visualisation of evolving data dynamics. Our experimental evaluations demonstrate the effectiveness and efficiency of S+t-SNE. The results highlight its ability to capture patterns in a streaming scenario. We hope our approach offers researchers and practitioners a real-time tool for understanding and interpreting high-dimensional data.
- Abstract(参考訳): 本稿では,無限のデータストリームを扱うように設計された t-SNE アルゴリズムを適応した S+t-SNE を提案する。
S+t-SNEの背後にある中核的な考え方は、新しいデータが到着するにつれて、t-SNE埋め込みを漸進的に更新し、ストリーミングシナリオを処理するためのスケーラビリティと適応性を確保することである。
各ステップで最も重要なポイントを選択することで、アルゴリズムは情報的な視覚化を維持しながらスケーラビリティを確保する。
ドリフト管理にブラインドメソッドを使用することで、埋め込みスペースを調整し、進化するデータダイナミクスの継続的な可視化を容易にする。
実験により, S+t-SNEの有効性と有効性を示した。
その結果は、ストリーミングシナリオでパターンをキャプチャする機能を強調している。
われわれのアプローチは、研究者や実践者が高次元データの理解と解釈にリアルタイムのツールを提供してくれることを願っている。
関連論文リスト
- Into the Void: Mapping the Unseen Gaps in High Dimensional Data [23.226089369715016]
GapMiner'というビジュアル分析システムによって拡張された包括的パイプラインを提案する。
高次元データセットの空の領域において、未解決の機会を探索し、活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-25T16:57:21Z) - World-Consistent Data Generation for Vision-and-Language Navigation [52.08816337783936]
VLN(Vision-and-Language Navigation)は、自然言語の指示に従って、エージェントがフォトリアリスティックな環境をナビゲートする必要がある課題である。
VLNの主な障害はデータの不足であり、目に見えない環境における一般化性能の低下につながる。
多様性と世界整合性の両方を満たす効率的なデータ拡張フレームワークである世界整合データ生成(WCGEN)を提案する。
論文 参考訳(メタデータ) (2024-12-09T11:40:54Z) - Perception Without Vision for Trajectory Prediction: Ego Vehicle Dynamics as Scene Representation for Efficient Active Learning in Autonomous Driving [0.0]
本研究では,アクティブラーニングフレームワークにおける軌道状態とサンプリング戦略のクラスタリング手法を提案する。
トラジェクティブ・ステートインフォームド・アクティブ・ラーニングを統合することで、より効率的で堅牢な自動運転システムが実現可能であることを示す。
論文 参考訳(メタデータ) (2024-05-15T02:54:11Z) - Distributed Neural Representation for Reactive in situ Visualization [23.80657290203846]
Inlicit Neural representations (INR) は、大規模ボリュームデータを圧縮するための強力なツールとして登場した。
分散ニューラル表現を開発し,それをその場での可視化に最適化する。
我々の技術はプロセス間のデータ交換を排除し、最先端の圧縮速度、品質、比率を達成する。
論文 参考訳(メタデータ) (2023-03-28T03:55:47Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - Segmentation-guided Domain Adaptation for Efficient Depth Completion [3.441021278275805]
本稿では,vgg05型CNNアーキテクチャと半教師付きドメイン適応手法に基づく効率的な深度補完モデルを提案する。
空間的コヒーレンスを高めるため,情報ソースとしてセグメンテーションを用いた学習プロセスを導出する。
提案手法は,計算フットプリントを著しく低くしながら,従来手法の効率的かつ低パラメータ状態を改善する。
論文 参考訳(メタデータ) (2022-10-14T13:01:25Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
従来の手法を補完する新しい意味データ拡張アルゴリズムを提案する。
提案手法はディープネットワークが線形化特徴の学習に有効であるという興味深い性質に着想を得たものである。
提案した暗黙的セマンティックデータ拡張(ISDA)アルゴリズムは,新たなロバストCE損失を最小限に抑える。
論文 参考訳(メタデータ) (2020-07-21T00:32:44Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
本稿では,オブジェクト検出におけるスケール変動問題を軽減するために,動的スケールトレーニングパラダイム(DST)を提案する。
提案したDSTのスケール変動処理に対する有効性を示す実験結果を得た。
推論オーバーヘッドを導入せず、一般的な検出設定のための無料ランチとして機能する。
論文 参考訳(メタデータ) (2020-04-26T16:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。