論文の概要: Rotate to Scan: UNet-like Mamba with Triplet SSM Module for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2403.17701v4
- Date: Fri, 3 May 2024 10:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 17:18:04.135079
- Title: Rotate to Scan: UNet-like Mamba with Triplet SSM Module for Medical Image Segmentation
- Title(参考訳): Rotate to Scan: 医用画像セグメンテーションのためのトリプルSSMモジュール付きUNetライクなマンバ
- Authors: Hao Tang, Lianglun Cheng, Guoheng Huang, Zhengguang Tan, Junhao Lu, Kaihong Wu,
- Abstract要約: 本稿では,新しいタイプの画像分割ネットワークとしてTriplet Mamba-UNetを提案する。
本モデルでは,従来のVM-UNetと比較してパラメータの3分の1の削減を実現している。
- 参考スコア(独自算出の注目度): 8.686237221268584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation holds a vital position in the realms of diagnosis and treatment within the medical domain. Traditional convolutional neural networks (CNNs) and Transformer models have made significant advancements in this realm, but they still encounter challenges because of limited receptive field or high computing complexity. Recently, State Space Models (SSMs), particularly Mamba and its variants, have demonstrated notable performance in the field of vision. However, their feature extraction methods may not be sufficiently effective and retain some redundant structures, leaving room for parameter reduction. Motivated by previous spatial and channel attention methods, we propose Triplet Mamba-UNet. The method leverages residual VSS Blocks to extract intensive contextual features, while Triplet SSM is employed to fuse features across spatial and channel dimensions. We conducted experiments on ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and Kvasir-Instrument datasets, demonstrating the superior segmentation performance of our proposed TM-UNet. Additionally, compared to the previous VM-UNet, our model achieves a one-third reduction in parameters.
- Abstract(参考訳): 画像セグメンテーションは、医療領域内の診断と治療の領域において重要な位置を占める。
従来の畳み込みニューラルネットワーク(CNN)とトランスフォーマーモデルは、この領域で大きな進歩を遂げてきたが、受容野の制限や高いコンピューティングの複雑さのために、依然として課題に直面している。
近年、状態空間モデル(SSM)、特にマンバとその変種は、視覚の分野で顕著な性能を示している。
しかし,それらの特徴抽出法は十分な有効性を持たず,冗長な構造を保ち,パラメータ削減の余地を残している。
従来の空間的・チャネル的アテンション手法により,Triplet Mamba-UNetを提案する。
この手法は残留VSSブロックを利用して集中的な文脈特徴を抽出し、Triplet SSMは空間次元とチャネル次元をまたいだ特徴を融合する。
我々はISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, Kvasir-Instrumentのデータセットについて実験を行い, 提案したTM-UNetのセグメンテーション性能について検証した。
さらに,従来のVM-UNetと比較して,パラメータの3分の1削減を実現している。
関連論文リスト
- EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation [3.6813810514531085]
我々は,EM-Netと呼ばれる新しい3次元医用画像セグメンテーションモデルを紹介し,その成功に触発されて,新しいマンバベースの3次元医用画像セグメンテーションモデルであるEM-Netを紹介した。
提案手法は,SOTAモデルのパラメータサイズをほぼ半分にし,訓練速度を2倍に向上させながら,より高精度なセグメンテーション精度を示すことを示す。
論文 参考訳(メタデータ) (2024-09-26T09:34:33Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
状態空間モデル(SSM)は、二次的複雑性を伴う長距離依存のモデリングにおいて効果的な性能を示した。
しかし、純粋なSSMベースのモデルは、コンピュータビジョンタスクにおける安定性と最適性能の達成に関連する課題に直面している。
本稿では,コンピュータビジョンのためのSSMベースのモデルをスケールする上での課題,特に大規模モデルの不安定性と非効率性について論じる。
論文 参考訳(メタデータ) (2024-07-18T17:59:58Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
本研究では、このタスクにステートスペースモデル(SSM)をデプロイする最初の試みである、HSI分類のための革新的なMamba-in-Mamba(MiM)アーキテクチャを紹介する。
MiMモデルには,1)イメージをシーケンスデータに変換する新しい集中型Mamba-Cross-Scan(MCS)機構,2)Tokenized Mamba(T-Mamba)エンコーダ,3)Weighted MCS Fusion(WMF)モジュールが含まれる。
3つの公開HSIデータセットによる実験結果から,本手法は既存のベースラインや最先端アプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-20T13:19:02Z) - VM-UNET-V2 Rethinking Vision Mamba UNet for Medical Image Segmentation [8.278068663433261]
本稿では,MambaアーキテクチャにインスパイアされたVison Mamba-UNetV2を提案する。
VM-UNetV2は、医用画像セグメンテーションタスクにおいて競合する性能を示す。
我々はISIC17、ISIC18、CVC-300、CVC-ClinicDB、Kvasir CVC-ColonDB、ETIS-LaribPolypDBのパブリックデータセットに関する包括的な実験を行う。
論文 参考訳(メタデータ) (2024-03-14T08:12:39Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
医用画像セグメンテーションのためのU字型アーキテクチャモデルVision Mamba UNet(VM-UNet)を提案する。
我々はISIC17,ISIC18,Synapseデータセットの総合的な実験を行い,VM-UNetが医用画像分割タスクにおいて競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-04T13:37:21Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
本稿では, サース・トゥ・ファインス・スパース・トランス (CST) を用いた新しいトランス方式を提案する。
HSI再構成のための深層学習にHSI空間を埋め込んだCST
特に,CSTは,提案したスペクトル認識スクリーニング機構(SASM)を粗いパッチ選択に使用し,選択したパッチを,細かなピクセルクラスタリングと自己相似性キャプチャのために,カスタマイズしたスペクトル集約ハッシュ型マルチヘッド自己アテンション(SAH-MSA)に入力する。
論文 参考訳(メタデータ) (2022-03-09T16:17:47Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy Laser Photocoagulation はツイン・ツー・ツイン・トランスフュージョン症候群(TTTS)の治療に広く用いられている治療法である
これにより、プロシージャ時間と不完全アブレーションが増加し、持続的なTTTSが生じる可能性がある。
コンピュータ支援による介入は、ビデオモザイクによって胎児の視野を広げ、船体ネットワークのより良い視覚化を提供することによって、これらの課題を克服するのに役立つかもしれない。
本稿では,長期フェトスコープビデオからドリフトフリーモザイクを作成することを目的とした,胎児環境のための汎用的でロバストなセマンティックセマンティックセグメンテーションとビデオモザイクアルゴリズムを開発するための大規模マルチセントデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。