Multi-Task Dense Prediction via Mixture of Low-Rank Experts
- URL: http://arxiv.org/abs/2403.17749v2
- Date: Mon, 27 May 2024 16:09:48 GMT
- Title: Multi-Task Dense Prediction via Mixture of Low-Rank Experts
- Authors: Yuqi Yang, Peng-Tao Jiang, Qibin Hou, Hao Zhang, Jinwei Chen, Bo Li,
- Abstract summary: We present a novel decoder-focused method for multi-task dense prediction, called Mixture-of-Low-Rank-Experts (MLoRE)
To model the global task relationships, MLoRE adds a generic convolution path to the original MoE structure, where each task feature can go through this path for explicit parameter sharing.
Our experiments show that our MLoRE achieves superior performance compared to previous state-of-the-art methods on all metrics.
- Score: 35.11968315125389
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Previous multi-task dense prediction methods based on the Mixture of Experts (MoE) have received great performance but they neglect the importance of explicitly modeling the global relations among all tasks. In this paper, we present a novel decoder-focused method for multi-task dense prediction, called Mixture-of-Low-Rank-Experts (MLoRE). To model the global task relationships, MLoRE adds a generic convolution path to the original MoE structure, where each task feature can go through this path for explicit parameter sharing. Furthermore, to control the parameters and computational cost brought by the increase in the number of experts, we take inspiration from LoRA and propose to leverage the low-rank format of a vanilla convolution in the expert network. Since the low-rank experts have fewer parameters and can be dynamically parameterized into the generic convolution, the parameters and computational cost do not change much with the increase of experts. Benefiting from this design, we increase the number of experts and its reception field to enlarge the representation capacity, facilitating multiple dense tasks learning in a unified network. Extensive experiments on the PASCAL-Context and NYUD-v2 benchmarks show that our MLoRE achieves superior performance compared to previous state-of-the-art methods on all metrics. Our code is available at https://github.com/YuqiYang213/MLoRE.
Related papers
- Mixture of Parrots: Experts improve memorization more than reasoning [72.445819694797]
We show that as we increase the number of experts, the memorization performance consistently increases while the reasoning capabilities saturate.
We find that increasing the number of experts helps solve knowledge-intensive tasks, but fails to yield the same benefits for reasoning tasks.
arXiv Detail & Related papers (2024-10-24T17:54:41Z) - Upcycling Instruction Tuning from Dense to Mixture-of-Experts via Parameter Merging [36.0133566024214]
Upcycling Instruction Tuning (UpIT) is a data-efficient approach for tuning a dense pre-trained model into a MoE instruction model.
To ensure each specialized expert in the MoE model works as expected, we select a small amount of seed data that each expert excels to pre-optimize the router.
arXiv Detail & Related papers (2024-10-02T14:48:22Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) is a novel design for efficient multi-task adaptation.
Our design allows for more fine-grained mixing, thereby increasing the model's ability to jointly handle multiple tasks.
arXiv Detail & Related papers (2024-08-02T18:05:10Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.