Deepfakes Generation and Detection: State-of-the-art, open challenges,
countermeasures, and way forward
- URL: http://arxiv.org/abs/2103.00484v1
- Date: Thu, 25 Feb 2021 18:26:50 GMT
- Title: Deepfakes Generation and Detection: State-of-the-art, open challenges,
countermeasures, and way forward
- Authors: Momina Masood, Marriam Nawaz, Khalid Mahmood Malik, Ali Javed, Aun
Irtaza
- Abstract summary: It is possible to generate deepfakes to disseminate disinformation, revenge porn, financial frauds, hoaxes, and to disrupt government functioning.
No attempt has been made to review approaches for detection and generation of both audio and video deepfakes.
This paper provides a comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for deepfake generation.
- Score: 2.15242029196761
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Easy access to audio-visual content on social media, combined with the
availability of modern tools such as Tensorflow or Keras, open-source trained
models, and economical computing infrastructure, and the rapid evolution of
deep-learning (DL) methods, especially Generative Adversarial Networks (GAN),
have made it possible to generate deepfakes to disseminate disinformation,
revenge porn, financial frauds, hoaxes, and to disrupt government functioning.
The existing surveys have mainly focused on deepfake video detection only. No
attempt has been made to review approaches for detection and generation of both
audio and video deepfakes. This paper provides a comprehensive review and
detailed analysis of existing tools and machine learning (ML) based approaches
for deepfake generation and the methodologies used to detect such manipulations
for the detection and generation of both audio and video deepfakes. For each
category of deepfake, we discuss information related to manipulation
approaches, current public datasets, and key standards for the performance
evaluation of deepfake detection techniques along with their results.
Additionally, we also discuss open challenges and enumerate future directions
to guide future researchers on issues that need to be considered to improve the
domains of both the deepfake generation and detection. This work is expected to
assist the readers in understanding the creation and detection mechanisms of
deepfake, along with their current limitations and future direction.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
Deep learning has enabled the creation or manipulation of high-fidelity facial images and videos.
This technology, also known as deepfake, has achieved dramatic progress and become increasingly popular in social media.
To diminish the risks of deepfake, it is desirable to develop powerful forgery detection methods.
arXiv Detail & Related papers (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - The Tug-of-War Between Deepfake Generation and Detection [4.62070292702111]
Multimodal generative models are rapidly evolving, leading to a surge in the generation of realistic video and audio.
Deepfake videos, which can convincingly impersonate individuals, have particularly garnered attention due to their potential misuse.
This survey paper examines the dual landscape of deepfake video generation and detection, emphasizing the need for effective countermeasures.
arXiv Detail & Related papers (2024-07-08T17:49:41Z) - Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
As AI-generated media become more realistic, the risk of misuse to spread misinformation and commit identity fraud increases.
This work traces the evolution from traditional single-modality methods to sophisticated multi-modal approaches that handle audio-visual and text-visual scenarios.
To our knowledge, this is the first survey of its kind.
arXiv Detail & Related papers (2024-06-11T05:48:04Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
Existing multimodal detection methods capture audio-visual inconsistencies to expose Deepfake videos.
We propose a novel Deepfake detection method to mine the correlation between Non-critical Phonemes and Visemes, termed NPVForensics.
Our model can be easily adapted to the downstream Deepfake datasets with fine-tuning.
arXiv Detail & Related papers (2023-06-12T06:06:05Z) - Undercover Deepfakes: Detecting Fake Segments in Videos [1.2609216345578933]
deepfake generation is a new paradigm of deepfakes which are mostly real videos altered slightly to distort the truth.
In this paper, we present a deepfake detection method that can address this issue by performing deepfake prediction at the frame and video levels.
In particular, the paradigm we address will form a powerful tool for the moderation of deepfakes, where human oversight can be better targeted to the parts of videos suspected of being deepfakes.
arXiv Detail & Related papers (2023-05-11T04:43:10Z) - Leveraging Deep Learning Approaches for Deepfake Detection: A Review [0.0]
Deepfakes are fabricated media generated by AI that are difficult to set apart from the real media.
This paper aims to explore different methodologies with an intention to achieve a cost-effective model.
arXiv Detail & Related papers (2023-04-04T16:04:42Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.