Search and Society: Reimagining Information Access for Radical Futures
- URL: http://arxiv.org/abs/2403.17901v4
- Date: Sat, 29 Mar 2025 17:55:15 GMT
- Title: Search and Society: Reimagining Information Access for Radical Futures
- Authors: Bhaskar Mitra,
- Abstract summary: Information retrieval research must understand and contend with the social implications of the technology it produces.<n>The community should aim to proactively set the research agenda for the kinds of systems we should build inspired by diverse explicitly stated sociotechnical imaginaries.
- Score: 3.909878683245887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information retrieval (IR) research must understand and contend with the social implications of the technology it produces. Instead of adopting a reactionary strategy of trying to mitigate potential social harms from emerging technologies, the community should aim to proactively set the research agenda for the kinds of systems we should build inspired by diverse explicitly stated sociotechnical imaginaries. The sociotechnical imaginaries that underpin the design and development of information access technologies needs to be explicitly articulated, and we need to develop theories of change in context of these diverse perspectives. Our guiding future imaginaries must be informed by other academic fields, such as human-computer interaction, information sciences, media studies, design, science and technology studies, social sciences, humanities, democratic theory, and critical theory, as well as legal and policy experts, civil rights and social justice activists, and artists, among others. In this perspective paper, we motivate why the community must consider this radical shift in how we do research and what we work on, and sketch a path forward towards this transformation.
Related papers
- Mapping Technological Futures: Anticipatory Discourse Through Text Mining [1.998140290950519]
This study examines anticipatory discourse surrounding technological futures by analysing 1.5 million posts from 400 key opinion leaders (KOLs) published on the X platform (from 2021 to 2023)
Using advanced text mining techniques, including BERTopic modelling, sentiment, emotion, and attitude analyses, the research identifies 100 distinct topics reflecting anticipated tech-driven futures.
arXiv Detail & Related papers (2025-03-25T15:20:15Z) - Emancipatory Information Retrieval [3.909878683245887]
This paper is a provocation for the role of computer-mediated information access in our emancipatory struggles.
The term "emancipatory" here signifies the moral concerns of universal humanization of all peoples.
arXiv Detail & Related papers (2025-01-31T15:55:14Z) - You Can't Get There From Here: Redefining Information Science to address our sociotechnical futures [0.0]
Current definitions of Information Science are inadequate to comprehensively describe the nature of its field of study.
This perspective piece advocates for an expanded definition of Information Science that fully includes the sociotechnical impacts information has on the conduct of research in this field.
arXiv Detail & Related papers (2025-01-21T00:30:33Z) - Social Science Is Necessary for Operationalizing Socially Responsible Foundation Models [1.24830234462377]
Social science has a long history of studying the social impacts of transformative technologies.
We propose a conceptual framework studying foundation models as sociotechnical systems.
We advocate for an interdisciplinary and collaborative research paradigm between AI and social science.
arXiv Detail & Related papers (2024-12-20T21:34:43Z) - Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
This research presents a framework for analyzing the dynamics of online communities in social media platforms.
By combining text classification and dynamic social network analysis, we uncover mechanisms driving community formation and evolution.
arXiv Detail & Related papers (2024-09-18T03:03:02Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions [50.545824691484796]
We identify six themes around the theme challenges and opportunities to improve Software Developer Diversity and Inclusion (SDDI)
We identify benefits, harms, and future research directions for the four main themes.
We discuss the remaining two themes, Artificial Intelligence & SDDI and AI & Computer Science education, which have a cross-cutting effect on the other themes.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
We propose a research playbook with the goal of providing a guide to formulate compelling and socially relevant research questions.
We show it can be used to question the impact of two current disruptive technologies: AI and AR/VR.
arXiv Detail & Related papers (2024-02-20T19:13:36Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Getting aligned on representational alignment [93.08284685325674]
We study the study of representational alignment in cognitive science, neuroscience, and machine learning.
Despite their overlapping interests, there is limited knowledge transfer between these fields.
We propose a unifying framework that can serve as a common language for research on representational alignment.
arXiv Detail & Related papers (2023-10-18T17:47:58Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
This article aims to ground what we dub the "participatory turn" in AI design by synthesizing existing theoretical literature on participation.
We articulate empirical findings concerning the current state of participatory practice in AI design based on an analysis of recently published research and semi-structured interviews with 12 AI researchers and practitioners.
arXiv Detail & Related papers (2023-10-02T05:30:42Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
In 2021, the Coordinated Science Laboratory CSL hosted the Future of Computing Symposium to celebrate its 70th anniversary.
We summarize the major technological points, insights, and directions that speakers brought forward during the symposium.
Participants discussed topics related to new computing paradigms, technologies, algorithms, behaviors, and research challenges to be expected in the future.
arXiv Detail & Related papers (2022-10-04T17:32:27Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - Envisioning Communities: A Participatory Approach Towards AI for Social
Good [10.504838259488844]
We argue that AI for social good ought to be assessed by the communities that the AI system will impact.
We show how the capabilities approach aligns with a participatory approach for the design and implementation of AI for social good research.
arXiv Detail & Related papers (2021-05-04T21:40:04Z) - Axes for Sociotechnical Inquiry in AI Research [3.0215443986383734]
We propose four directions for inquiry into new and evolving areas of technological development.
The paper provides a lexicon for sociotechnical inquiry and illustrates it through the example of consumer drone technology.
arXiv Detail & Related papers (2021-04-26T16:49:04Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z) - Data, Power and Bias in Artificial Intelligence [5.124256074746721]
Artificial Intelligence has the potential to exacerbate societal bias and set back decades of advances in equal rights and civil liberty.
Data used to train machine learning algorithms may capture social injustices, inequality or discriminatory attitudes that may be learned and perpetuated in society.
This paper reviews ongoing work to ensure data justice, fairness and bias mitigation in AI systems from different domains.
arXiv Detail & Related papers (2020-07-28T16:17:40Z) - Conservative AI and social inequality: Conceptualizing alternatives to
bias through social theory [0.0]
Societal issues can no longer be out of scope for AI and machine learning, given the impact of these systems on human lives.
Conservatism refers to dominant tendencies that reproduce and strengthen the status quo, while radical approaches work to disrupt systemic forms of inequality.
This requires engagement with a growing body of critical AI scholarship that goes beyond biased data to analyze structured ways of perpetuating inequality.
arXiv Detail & Related papers (2020-07-16T21:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.