Pseudo-MRI-Guided PET Image Reconstruction Method Based on a Diffusion Probabilistic Model
- URL: http://arxiv.org/abs/2403.18139v1
- Date: Tue, 26 Mar 2024 22:50:36 GMT
- Title: Pseudo-MRI-Guided PET Image Reconstruction Method Based on a Diffusion Probabilistic Model
- Authors: Weijie Gan, Huidong Xie, Carl von Gall, Günther Platsch, Michael T. Jurkiewicz, Andrea Andrade, Udunna C. Anazodo, Ulugbek S. Kamilov, Hongyu An, Jorge Cabello,
- Abstract summary: Anatomically guided PET reconstruction using MRI information has been shown to have the potential to improve PET image quality.
In this work we employed a diffusion probabilistic model (DPM) to infer T1-weighted-MRI (deep-MRI) images from FDG-PET brain images.
We then use the DPM-generated T1w-MRI to guide the PET reconstruction.
- Score: 6.2903848642045626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anatomically guided PET reconstruction using MRI information has been shown to have the potential to improve PET image quality. However, these improvements are limited to PET scans with paired MRI information. In this work we employed a diffusion probabilistic model (DPM) to infer T1-weighted-MRI (deep-MRI) images from FDG-PET brain images. We then use the DPM-generated T1w-MRI to guide the PET reconstruction. The model was trained with brain FDG scans, and tested in datasets containing multiple levels of counts. Deep-MRI images appeared somewhat degraded than the acquired MRI images. Regarding PET image quality, volume of interest analysis in different brain regions showed that both PET reconstructed images using the acquired and the deep-MRI images improved image quality compared to OSEM. Same conclusions were found analysing the decimated datasets. A subjective evaluation performed by two physicians confirmed that OSEM scored consistently worse than the MRI-guided PET images and no significant differences were observed between the MRI-guided PET images. This proof of concept shows that it is possible to infer DPM-based MRI imagery to guide the PET reconstruction, enabling the possibility of changing reconstruction parameters such as the strength of the prior on anatomically guided PET reconstruction in the absence of MRI.
Related papers
- Joint PET-MRI Reconstruction with Diffusion Stochastic Differential Model [19.062446884016854]
PET suffers from a low signal-to-noise ratio. Meanwhile, the k-space data acquisition process in MRI is time-consuming.
We propose a novel joint reconstruction model by diffusion differential equations based on learning joint probability distribution of PET and MRI.
arXiv Detail & Related papers (2024-08-07T04:01:50Z) - Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI [5.190302448685122]
We propose a framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM)
The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase.
The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth.
arXiv Detail & Related papers (2024-05-03T22:33:46Z) - Joint Diffusion: Mutual Consistency-Driven Diffusion Model for PET-MRI Co-Reconstruction [19.790873500057355]
The study aims to accelerate MRI and enhance PET image quality.
Conventional approaches involve the separate reconstruction of each modality within PET-MRI systems.
We propose a novel PET-MRI joint reconstruction model employing a mutual consistency-driven diffusion mode, namely MC-Diffusion.
arXiv Detail & Related papers (2023-11-24T13:26:53Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Amyloid-Beta Axial Plane PET Synthesis from Structural MRI: An Image
Translation Approach for Screening Alzheimer's Disease [49.62561299282114]
An image translation model is implemented to produce synthetic amyloid-beta PET images from structural MRI that are quantitatively accurate.
We found that the synthetic PET images could be produced with a high degree of similarity to truth in terms of shape, contrast and overall high SSIM and PSNR.
arXiv Detail & Related papers (2023-09-01T16:26:42Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model [18.106861006893524]
PET scanning is costly and involves radioactive exposure, resulting in a lack of PET.
Ultra-high-field imaging has proven valuable in both clinical and academic settings.
We propose a method for synthetic PET from high-filed MRI and ultra-high-field MRI.
arXiv Detail & Related papers (2023-05-06T02:41:03Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.