Joint PET-MRI Reconstruction with Diffusion Stochastic Differential Model
- URL: http://arxiv.org/abs/2408.11840v1
- Date: Wed, 7 Aug 2024 04:01:50 GMT
- Title: Joint PET-MRI Reconstruction with Diffusion Stochastic Differential Model
- Authors: Taofeng Xie, Zhuoxu Cui, Congcong Liu, Chen Luo, Huayu Wang, Yuanzhi Zhang, Xuemei Wang, Yihang Zhou, Qiyu Jin, Guoqing Chen, Dong Liang, Haifeng Wang,
- Abstract summary: PET suffers from a low signal-to-noise ratio. Meanwhile, the k-space data acquisition process in MRI is time-consuming.
We propose a novel joint reconstruction model by diffusion differential equations based on learning joint probability distribution of PET and MRI.
- Score: 19.062446884016854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PET suffers from a low signal-to-noise ratio. Meanwhile, the k-space data acquisition process in MRI is time-consuming by PET-MRI systems. We aim to accelerate MRI and improve PET image quality. This paper proposed a novel joint reconstruction model by diffusion stochastic differential equations based on learning the joint probability distribution of PET and MRI. Compare the results underscore the qualitative and quantitative improvements our model brings to PET and MRI reconstruction, surpassing the current state-of-the-art methodologies. Joint PET-MRI reconstruction is a challenge in the PET-MRI system. This studies focused on the relationship extends beyond edges. In this study, PET is generated from MRI by learning joint probability distribution as the relationship.
Related papers
- Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis [45.074243735766]
We propose a physics-guided diffusion model to generate high-quality dMRI.
Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process.
Our experiment results show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T07:09:19Z) - PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models [7.6672160690646445]
We introduce PASTA, a novel pathology-aware image translation framework based on conditional diffusion models.
A cycle exchange consistency and volumetric generation strategy elevate PASTA's capability to produce high-quality 3D PET scans.
For Alzheimer's classification, the performance of synthesized scans improves over MRI by 4%, almost reaching the performance of actual PET.
arXiv Detail & Related papers (2024-05-27T08:33:24Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
Alzheimer's Disease hallmarks include amyloid-beta deposits and brain atrophy.
PET is expensive, invasive and exposes patients to ionizing radiation.
MRI is cheaper, non-invasive, and free from ionizing radiation but limited to measuring brain atrophy.
arXiv Detail & Related papers (2024-05-03T14:10:29Z) - Pseudo-MRI-Guided PET Image Reconstruction Method Based on a Diffusion Probabilistic Model [6.2903848642045626]
Anatomically guided PET reconstruction using MRI information has been shown to have the potential to improve PET image quality.
In this work we employed a diffusion probabilistic model (DPM) to infer T1-weighted-MRI (deep-MRI) images from FDG-PET brain images.
We then use the DPM-generated T1w-MRI to guide the PET reconstruction.
arXiv Detail & Related papers (2024-03-26T22:50:36Z) - Joint Diffusion: Mutual Consistency-Driven Diffusion Model for PET-MRI Co-Reconstruction [19.790873500057355]
The study aims to accelerate MRI and enhance PET image quality.
Conventional approaches involve the separate reconstruction of each modality within PET-MRI systems.
We propose a novel PET-MRI joint reconstruction model employing a mutual consistency-driven diffusion mode, namely MC-Diffusion.
arXiv Detail & Related papers (2023-11-24T13:26:53Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model [18.106861006893524]
PET scanning is costly and involves radioactive exposure, resulting in a lack of PET.
Ultra-high-field imaging has proven valuable in both clinical and academic settings.
We propose a method for synthetic PET from high-filed MRI and ultra-high-field MRI.
arXiv Detail & Related papers (2023-05-06T02:41:03Z) - Physics-driven Deep Learning for PET/MRI [2.2113800586902608]
We review physics- and data-driven reconstruction techniques for simultaneous positron emission tomography (PET) / magnetic resonance imaging (MRI) systems.
These reconstruction approaches utilize priors, either structural or statistical, together with a physics-based description of the PET system response.
We elucidate how a multi-faceted approach accommodates hybrid data- and physics-driven machine learning for reconstruction of 3D PET/MRI.
arXiv Detail & Related papers (2022-06-11T21:35:27Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.