論文の概要: DSF-GAN: DownStream Feedback Generative Adversarial Network
- arxiv url: http://arxiv.org/abs/2403.18267v1
- Date: Wed, 27 Mar 2024 05:41:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:16:31.406194
- Title: DSF-GAN: DownStream Feedback Generative Adversarial Network
- Title(参考訳): DSF-GAN:ダウンストリームフィードバック生成対向ネットワーク
- Authors: Oriel Perets, Nadav Rappoport,
- Abstract要約: 我々はDSF-GAN(DownStream Feedback Generative Adversarial Network)と呼ばれる新しいアーキテクチャを提案する。
DSF-GANは、トレーニング中に下流予測モデルからのフィードバックを取り入れて、ジェネレータの損失関数を貴重な情報で強化する。
本実験では, DSF-GANで生成した合成試料を, フィードバックのない同一のGANアーキテクチャで生成したものと比較して, モデル性能の向上を実証した。
- 参考スコア(独自算出の注目度): 0.07083082555458872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Utility and privacy are two crucial measurements of the quality of synthetic tabular data. While significant advancements have been made in privacy measures, generating synthetic samples with high utility remains challenging. To enhance the utility of synthetic samples, we propose a novel architecture called the DownStream Feedback Generative Adversarial Network (DSF-GAN). This approach incorporates feedback from a downstream prediction model during training to augment the generator's loss function with valuable information. Thus, DSF-GAN utilizes a downstream prediction task to enhance the utility of synthetic samples. To evaluate our method, we tested it using two popular datasets. Our experiments demonstrate improved model performance when training on synthetic samples generated by DSF-GAN, compared to those generated by the same GAN architecture without feedback. The evaluation was conducted on the same validation set comprising real samples. All code and datasets used in this research will be made openly available for ease of reproduction.
- Abstract(参考訳): ユーティリティとプライバシは、合成表データの品質の2つの重要な測定基準である。
プライバシー対策では大きな進歩があったが、高ユーティリティで合成サンプルを生成することは依然として困難である。
そこで我々は,DownStream Feedback Generative Adversarial Network (DSF-GAN) と呼ばれる新しいアーキテクチャを提案する。
このアプローチでは、トレーニング中の下流予測モデルからのフィードバックを取り入れて、ジェネレータの損失関数を貴重な情報で強化する。
従って、DSF-GANは、下流予測タスクを使用して、合成サンプルの有用性を高める。
提案手法を評価するために,2つの一般的なデータセットを用いて実験を行った。
本実験では, DSF-GANで生成した合成試料を, フィードバックのない同一のGANアーキテクチャで生成したものと比較して, モデル性能の向上を実証した。
実検体と同一の検体を用いて評価を行った。
この研究で使用されるコードとデータセットはすべて、公開され、再現が容易になる。
関連論文リスト
- Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks [3.3903891679981593]
本稿では,医療領域に特化して設計されたGANベースの合成データジェネレータであるBias-transforming Generative Adversarial Networks (Bt-GAN)について述べる。
以上の結果から,Bt-GANはSOTA精度を向上し,公平性とバイアスの最小化を図った。
論文 参考訳(メタデータ) (2024-04-21T12:16:38Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - Unsupervised evaluation of GAN sample quality: Introducing the TTJac
Score [5.1359892878090845]
データフリーで個々の合成画像の忠実度を測定するために「TTJac score」を提案する。
FFHQ, AFHQ-Wild, LSUN-Cars, LSUN-Horseデータセット上でのStyleGAN 2およびStyleGAN 2 ADAモデルに適用した実験結果を示す。
論文 参考訳(メタデータ) (2023-08-31T19:55:50Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - PhysioGAN: Training High Fidelity Generative Model for Physiological
Sensor Readings [6.029263679246354]
PHYSIOGANは高忠実性合成生理学的センサーデータ読取のための生成モデルである。
実世界の2つの異なるデータセット(ECG分類とモーションセンサーデータセットからのアクティビティ認識)を用いて、最先端技術と比較した。
論文 参考訳(メタデータ) (2022-04-25T07:38:43Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - Reparameterized Sampling for Generative Adversarial Networks [71.30132908130581]
本稿では,マルコフ連鎖をジェネレータの潜在空間に再配置することで,一般依存型提案を可能にする新しいサンプリング手法REP-GANを提案する。
実験的な実験により、我々のREP-GANはサンプル効率を大幅に改善し、同時により良いサンプル品質を得ることを示した。
論文 参考訳(メタデータ) (2021-07-01T10:34:55Z) - Using generative adversarial networks to synthesize artificial financial
datasets [2.376767664163658]
我々は、GANを用いて、研究とベンチマークの目的で、人工財務データを合成することを提案する。
このアプローチを3つのAmerican Expressデータセット上でテストし、適切にトレーニングされたGANがこれらのデータセットを高い忠実度で複製可能であることを示す。
論文 参考訳(メタデータ) (2020-02-06T14:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。