BAM: Box Abstraction Monitors for Real-time OoD Detection in Object Detection
- URL: http://arxiv.org/abs/2403.18373v1
- Date: Wed, 27 Mar 2024 09:10:01 GMT
- Title: BAM: Box Abstraction Monitors for Real-time OoD Detection in Object Detection
- Authors: Changshun Wu, Weicheng He, Chih-Hong Cheng, Xiaowei Huang, Saddek Bensalem,
- Abstract summary: Out-of-distribution (OoD) detection techniques for deep neural networks (DNNs) are crucial in safety-critical applications.
This paper proposes a simple, yet surprisingly effective, method that requires neither retraining nor architectural change in object detection DNN.
- Score: 8.206992765692535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Out-of-distribution (OoD) detection techniques for deep neural networks (DNNs) become crucial thanks to their filtering of abnormal inputs, especially when DNNs are used in safety-critical applications and interact with an open and dynamic environment. Nevertheless, integrating OoD detection into state-of-the-art (SOTA) object detection DNNs poses significant challenges, partly due to the complexity introduced by the SOTA OoD construction methods, which require the modification of DNN architecture and the introduction of complex loss functions. This paper proposes a simple, yet surprisingly effective, method that requires neither retraining nor architectural change in object detection DNN, called Box Abstraction-based Monitors (BAM). The novelty of BAM stems from using a finite union of convex box abstractions to capture the learned features of objects for in-distribution (ID) data, and an important observation that features from OoD data are more likely to fall outside of these boxes. The union of convex regions within the feature space allows the formation of non-convex and interpretable decision boundaries, overcoming the limitations of VOS-like detectors without sacrificing real-time performance. Experiments integrating BAM into Faster R-CNN-based object detection DNNs demonstrate a considerably improved performance against SOTA OoD detection techniques.
Related papers
- SFOD: Spiking Fusion Object Detector [10.888008544975662]
Spiking Fusion Object Detector (SFOD) is a simple and efficient approach to SNN-based object detection.
We design a Spiking Fusion Module, achieving the first-time fusion of feature maps from different scales in SNNs applied to event cameras.
We establish state-of-the-art classification results based on SNNs, achieving 93.7% accuracy on the NCAR dataset.
arXiv Detail & Related papers (2024-03-22T13:24:50Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training [14.787056022080625]
This paper presents a novel abstraction-based approach to bypass the crux of over-approximating DNNs in reachability analysis.
We extend conventional DNNs by inserting an additional abstraction layer, which abstracts a real number to an interval for training.
We devise the first black-box reachability analysis approach for DNN-controlled systems, where trained DNNs are only queried as black-box oracles for the actions on abstract states.
arXiv Detail & Related papers (2022-11-21T00:11:50Z) - LO-Det: Lightweight Oriented Object Detection in Remote Sensing Images [11.41884406231953]
In this paper, we propose an effective lightweight oriented object detector (LO-Det)
Specifically, a channel separation-aggregation (CSA) structure is designed to simplify the complexity of stacked separable convolutions.
The proposed LO-Det can run very fast even on embedded devices with the competitive accuracy of detecting oriented objects.
arXiv Detail & Related papers (2022-09-16T04:28:01Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Abstraction and Symbolic Execution of Deep Neural Networks with Bayesian
Approximation of Hidden Features [8.723426955657345]
We propose a novel abstraction method which abstracts a deep neural network and a dataset into a Bayesian network.
We make use of dimensionality reduction techniques to identify hidden features that have been learned by hidden layers of the DNN.
We can derive a runtime monitoring approach to detect in operational time rare inputs.
arXiv Detail & Related papers (2021-03-05T14:28:42Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.