論文の概要: Colour and Brush Stroke Pattern Recognition in Abstract Art using Modified Deep Convolutional Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2403.18397v1
- Date: Wed, 27 Mar 2024 09:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:37:28.013259
- Title: Colour and Brush Stroke Pattern Recognition in Abstract Art using Modified Deep Convolutional Generative Adversarial Networks
- Title(参考訳): 改良された深部畳み込み生成対向ネットワークを用いた抽象芸術における色とブラッシュストロークパターン認識
- Authors: Srinitish Srinivasan, Varenya Pathak,
- Abstract要約: 本稿では,GAN(Generative Adrial Neural Networks)を用いた抽象絵画の広範な分布について述べる。
課題は、一般的なトレーニングの落とし穴を克服する効率的なGANアーキテクチャを開発することだ。
本稿では,高品質なアートワーク生成のための改良型DCGAN (mDCGAN) を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstract Art is an immensely popular, discussed form of art that often has the ability to depict the emotions of an artist. Many researchers have made attempts to study abstract art in the form of edge detection, brush stroke and emotion recognition algorithms using machine and deep learning. This papers describes the study of a wide distribution of abstract paintings using Generative Adversarial Neural Networks(GAN). GANs have the ability to learn and reproduce a distribution enabling researchers and scientists to effectively explore and study the generated image space. However, the challenge lies in developing an efficient GAN architecture that overcomes common training pitfalls. This paper addresses this challenge by introducing a modified-DCGAN (mDCGAN) specifically designed for high-quality artwork generation. The approach involves a thorough exploration of the modifications made, delving into the intricate workings of DCGANs, optimisation techniques, and regularisation methods aimed at improving stability and realism in art generation enabling effective study of generated patterns. The proposed mDCGAN incorporates meticulous adjustments in layer configurations and architectural choices, offering tailored solutions to the unique demands of art generation while effectively combating issues like mode collapse and gradient vanishing. Further this paper explores the generated latent space by performing random walks to understand vector relationships between brush strokes and colours in the abstract art space and a statistical analysis of unstable outputs after a certain period of GAN training and compare its significant difference. These findings validate the effectiveness of the proposed approach, emphasising its potential to revolutionise the field of digital art generation and digital art ecosystem.
- Abstract(参考訳): 抽象芸術は、しばしば芸術家の感情を描く能力を持つ、非常に人気のある、議論された芸術形態である。
多くの研究者が、機械学習とディープラーニングを使用して、エッジ検出、ブラシストローク、感情認識アルゴリズムという形で抽象芸術を研究する試みを行っている。
本稿では,GAN(Generative Adversarial Neural Networks)を用いた抽象絵画の広範な分布について述べる。
GANは、研究者や科学者が生成した画像空間を効果的に探索し、研究できる分布を学習し、再現する能力を持っている。
しかし、課題は、一般的なトレーニングの落とし穴を克服する効率的なGANアーキテクチャを開発することである。
本稿では,高品質なアートワーク生成のための改良型DCGAN(mDCGAN)を導入することで,この問題に対処する。
このアプローチは、DCGANの複雑な作業、最適化技術、および生成したパターンを効果的に研究できるアートジェネレーションの安定性とリアリズムを改善するための正規化手法を徹底的に探究することを含む。
提案したmDCGANは、階層構成とアーキテクチャ選択に厳密な調整を取り入れ、モデム崩壊や勾配消滅といった問題に効果的に対処しながら、アートジェネレーションのユニークな要求に対する調整されたソリューションを提供する。
さらに,抽象芸術空間におけるブラッシュストロークと色の間のベクトル関係をランダムに理解し,GAN訓練後の不安定な出力の統計的解析を行い,その有意差を比較することにより,生成した潜時空間を探索する。
これらの結果は,デジタルアート生成とデジタルアートエコシステムの分野に革命をもたらす可能性を強調し,提案手法の有効性を検証した。
関連論文リスト
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
本稿では,アクター批判とモデルに基づくアプローチを組み合わせたオブジェクト中心強化学習アルゴリズムを提案する。
変換器エンコーダを用いてオブジェクト表現とグラフニューラルネットワークを抽出し、環境のダイナミクスを近似する。
本アルゴリズムは,現状のモデルフリーアクター批判アルゴリズムよりも複雑な3次元ロボット環境と構成構造をもつ2次元環境において,より優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-26T06:05:12Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
テキスト・ツー・イメージ生成(テキスト・トゥ・イメージ・ジェネレーション、英: Text-to-image Generation、TTI)とは、テキスト入力を処理し、テキスト記述に基づいて高忠実度画像を生成するモデルである。
拡散モデル (diffusion model) は、繰り返しステップによるノイズの体系的導入を通じて画像の生成に使用される顕著な生成モデルである。
大規模モデルの時代、モデルサイズを拡大し、大規模言語モデルとの統合により、TTIモデルの性能がさらに向上した。
論文 参考訳(メタデータ) (2023-09-02T03:27:20Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
本研究では、これらの問題に対処するために、明示的に合成されたマルチビュー画像を活用する新しい戦略を提案する。
我々のアプローチは、高画質画像を生成するために、LCDによって強化されたイメージ・ツー・イメージ・パイプラインを活用することである。
組込み判別器では、合成したマルチビュー画像は実データと見なされ、最適化された3Dモデルのレンダリングは偽データとして機能する。
論文 参考訳(メタデータ) (2023-08-22T14:39:17Z) - Augmenting Character Designers Creativity Using Generative Adversarial
Networks [0.0]
GAN(Generative Adversarial Networks)は、さまざまな分野の研究者の注目を集めている。
しかし、近年のGANはリアリズムに重点を置いているが、超現実的な出力を生成することはいくつかの領域にとって優先事項ではない。
本稿では,異なるGANアーキテクチャと,新しいビジュアルキャラクタデータセットをスクラッチからトレーニングした場合のパフォーマンスを比較した。
また、転送学習やデータ拡張といった代替手法も検討し、計算資源の制限を克服する。
論文 参考訳(メタデータ) (2023-05-28T10:52:03Z) - Synergy of Machine and Deep Learning Models for Multi-Painter
Recognition [0.0]
我々は,62名のアーティストを含む絵画認識タスクのための大規模データセットを新たに導入し,良好な結果を得た。
RegNetは、機能をエクスポートする上で、SVMは、最大85%のパフォーマンスを持つ画家に基づいて、イメージの最高の分類を行う。
論文 参考訳(メタデータ) (2023-04-28T11:34:53Z) - Investigating GANsformer: A Replication Study of a State-of-the-Art
Image Generation Model [0.0]
我々は、オリジナルのGANネットワークであるGANformerの新たなバリエーションを再現し、評価する。
リソースと時間制限のため、ネットワークのトレーニング時間、データセットタイプ、サイズを制限しなければなりませんでした。
論文 参考訳(メタデータ) (2023-03-15T12:51:16Z) - DC-Art-GAN: Stable Procedural Content Generation using DC-GANs for
Digital Art [4.9631159466100305]
我々は,安定かつ異質なアートジェネレーションのために,敵対的な訓練を施した深層生成ネットワークのコンセプトを提唱する。
この研究は主に、DC-GAN(Deep Convolutional Generative Adversarial Network)の使用に焦点を当て、GANトレーニングにおける共通の落とし穴に対処する技術を探っている。
論文 参考訳(メタデータ) (2022-09-06T23:06:46Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
本稿では、ネットワークアーキテクチャとそのパラメータを自動化とともに最適化し、トレーニング中にGANを動的に成長させる手法を提案する。
本手法はアーキテクチャ探索手法を勾配に基づく訓練とインターリーブステップとして組み込んで,ジェネレータと識別器の最適アーキテクチャ成長戦略を定期的に探究する。
論文 参考訳(メタデータ) (2021-06-16T01:25:51Z) - A deep learning approach to clustering visual arts [7.363576598794859]
本稿では,deep Learning approach to cLustering vIsUal artSを提案する。
この方法は、事前訓練された畳み込みネットワークを使用して特徴を抽出し、これらの特徴を深い組込みクラスタリングモデルに供給する。
生の入力データを潜在空間にマッピングするタスクは、この潜在空間内のクラスタセントロイドの集合を見つけるタスクと共同で最適化される。
論文 参考訳(メタデータ) (2021-06-11T08:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。