Deep Learning Segmentation and Classification of Red Blood Cells Using a Large Multi-Scanner Dataset
- URL: http://arxiv.org/abs/2403.18468v1
- Date: Wed, 27 Mar 2024 11:28:32 GMT
- Title: Deep Learning Segmentation and Classification of Red Blood Cells Using a Large Multi-Scanner Dataset
- Authors: Mohamed Elmanna, Ahmed Elsafty, Yomna Ahmed, Muhammad Rushdi, Ahmed Morsy,
- Abstract summary: We propose a two-stage deep learning framework for RBC image segmentation and classification.
The dataset is a highly diverse dataset of more than 100K RBCs containing eight different classes.
An IoU of 98.03% and an average classification accuracy of 96.5% were attained on the test set.
- Score: 0.18641315013048293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital pathology has recently been revolutionized by advancements in artificial intelligence, deep learning, and high-performance computing. With its advanced tools, digital pathology can help improve and speed up the diagnostic process, reduce human errors, and streamline the reporting step. In this paper, we report a new large red blood cell (RBC) image dataset and propose a two-stage deep learning framework for RBC image segmentation and classification. The dataset is a highly diverse dataset of more than 100K RBCs containing eight different classes. The dataset, which is considerably larger than any publicly available hematopathology dataset, was labeled independently by two hematopathologists who also manually created masks for RBC cell segmentation. Subsequently, in the proposed framework, first, a U-Net model was trained to achieve automatic RBC image segmentation. Second, an EfficientNetB0 model was trained to classify RBC images into one of the eight classes using a transfer learning approach with a 5X2 cross-validation scheme. An IoU of 98.03% and an average classification accuracy of 96.5% were attained on the test set. Moreover, we have performed experimental comparisons against several prominent CNN models. These comparisons show the superiority of the proposed model with a good balance between performance and computational cost.
Related papers
- Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
This study introduces a novel and accurate approach to breast cancer classification using histopathology images.
It systematically compares leading Convolutional Neural Network (CNN) models across varying image datasets.
Our findings establish the settings required to achieve exceptional classification accuracy for standalone CNN models.
arXiv Detail & Related papers (2024-10-04T11:31:43Z) - Histopathological Image Classification with Cell Morphology Aware Deep Neural Networks [11.749248917866915]
We propose a novel DeepCMorph model pre-trained to learn cell morphology and identify a large number of different cancer types.
We pretrained this module on the Pan-Cancer TCGA dataset consisting of over 270K tissue patches extracted from 8736 diagnostic slides from 7175 patients.
The proposed solution achieved a new state-of-the-art performance on the dataset under consideration, detecting 32 cancer types with over 82% accuracy and outperforming all previously proposed solutions by more than 4%.
arXiv Detail & Related papers (2024-07-11T16:03:59Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Semantic Segmentation of Anaemic RBCs Using Multilevel Deep
Convolutional Encoder-Decoder Network [2.5398817423053037]
We propose a convolutional neural network (CNN) model for semantic segmentation of red blood cells.
The proposed model preserved pixel-level semantic information extracted in one layer and then passed to the next layer to choose relevant features.
This phenomenon helps to precise pixel-level counting of healthy and anaemic-RBC elements along with morphological analysis.
arXiv Detail & Related papers (2022-02-09T17:31:50Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.