論文の概要: Synthesizing EEG Signals from Event-Related Potential Paradigms with Conditional Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.18486v1
- Date: Wed, 27 Mar 2024 11:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:08:03.966779
- Title: Synthesizing EEG Signals from Event-Related Potential Paradigms with Conditional Diffusion Models
- Title(参考訳): 条件拡散モデルを用いた事象関連電位パラダイムからの脳波信号の合成
- Authors: Guido Klein, Pierre Guetschel, Gianluigi Silvestri, Michael Tangermann,
- Abstract要約: 本研究では,主観,セッション,クラス固有の脳波を直接生成する条件拡散モデルを提案する。
その結果,提案モデルでは被験者,セッション,クラスごとの実際のデータに類似した脳波データを生成することが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 3.187381965457262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data scarcity in the brain-computer interface field can be alleviated through the use of generative models, specifically diffusion models. While diffusion models have previously been successfully applied to electroencephalogram (EEG) data, existing models lack flexibility w.r.t.~sampling or require alternative representations of the EEG data. To overcome these limitations, we introduce a novel approach to conditional diffusion models that utilizes classifier-free guidance to directly generate subject-, session-, and class-specific EEG data. In addition to commonly used metrics, domain-specific metrics are employed to evaluate the specificity of the generated samples. The results indicate that the proposed model can generate EEG data that resembles real data for each subject, session, and class.
- Abstract(参考訳): 脳-コンピュータインタフェース分野におけるデータの不足は、生成モデル、特に拡散モデルを使用することで緩和することができる。
拡散モデルは以前は脳波(EEG)データにうまく適用されてきたが、既存のモデルは柔軟性に欠けており、EEGデータの代替表現を必要としている。
これらの制約を克服するために,分類器のないガイダンスを用いて,主観,セッション,クラス固有の脳波データを直接生成する条件拡散モデルを提案する。
一般的に使用されるメトリクスに加えて、生成されたサンプルの特異性を評価するためにドメイン固有のメトリクスが使用される。
その結果,提案モデルでは被験者,セッション,クラスごとの実際のデータに類似した脳波データを生成することが可能であることが示唆された。
関連論文リスト
- Can EEG resting state data benefit data-driven approaches for motor-imagery decoding? [4.870701423888026]
本稿では,デコードモデルの一般化を促進するための特徴結合手法を提案する。
我々は、EEG信号分類のための標準的な畳み込みニューラルネットワークであるEEGNetモデルと、静止状態のEEGデータから導かれる機能的接続手段を組み合わせる。
ユーザ内のシナリオに対する平均精度の改善が観察されているが、ランダムなデータ結合と比較して、ユーザ間のシナリオ間の結合はメリットがない。
論文 参考訳(メタデータ) (2024-10-28T07:18:32Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Synthetic Face Datasets Generation via Latent Space Exploration from Brownian Identity Diffusion [20.352548473293993]
顔認識(FR)モデルは、プライバシと倫理的懸念のある大規模データセットでトレーニングされている。
近年,FRモデルのトレーニングのために,合成データを用いて真のデータを補完あるいは置き換えることが提案されている。
ブラウン力を受ける軟質粒子の物理運動にインスパイアされた新しい手法を導入し, 様々な制約の下で潜在空間の正体をサンプリングする。
これを使って、いくつかの顔データセットを生成し、FRモデルをトレーニングすることでそれらをベンチマークし、我々のメソッドで生成されたデータは、以前のGANベースのデータセットのパフォーマンスを超え、現状と競合するパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-04-30T22:32:02Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
大規模複合脳波データに基づいて事前学習した脳波基礎モデル,すなわちEEGFormerを提案する。
本モデルの有効性を検証するため,様々な下流タスクにおいて広範囲に評価し,異なる転送条件下での性能を評価する。
論文 参考訳(メタデータ) (2024-01-11T17:36:24Z) - DATGAN: Integrating expert knowledge into deep learning for synthetic
tabular data [0.0]
合成データは、バイアスデータセットの修正や、シミュレーション目的の不足したオリジナルデータの置換など、さまざまなアプリケーションで使用することができる。
ディープラーニングモデルはデータ駆動であり、生成プロセスを制御するのは難しい。
本稿では、これらの制限に対処するため、DATGAN(Directed Acyclic Tabular GAN)を提案する。
論文 参考訳(メタデータ) (2022-03-07T16:09:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Partially Conditioned Generative Adversarial Networks [75.08725392017698]
Generative Adversarial Networks (GAN)は、実世界のトレーニングデータセットの基盤となる確率分布を暗黙的にモデル化することで、人工データセットを合成する。
条件付きGANとその変種の導入により、これらの手法はデータセット内の各サンプルで利用可能な補助情報に基づいて条件付きサンプルを生成するように拡張された。
本研究では,標準条件付きGANがそのようなタスクに適さないことを論じ,新たなAdversarial Networkアーキテクチャとトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-07-06T15:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。