論文の概要: Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning -- A Review
- arxiv url: http://arxiv.org/abs/2403.18565v1
- Date: Wed, 27 Mar 2024 13:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:48:33.195907
- Title: Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning -- A Review
- Title(参考訳): ディープラーニングによる3次元および4次元コーンビームCT画像のアーチファクト低減
- Authors: Mohammadreza Amirian, Daniel Barco, Ivo Herzig, Frank-Peter Schilling,
- Abstract要約: コーンビームCT(CBCT)における画像品質向上のための深層学習技術
本稿では,3次元のアーティファクトの削減に成功している深層学習技術の概要と,時間分解(4D)CBCTについて概説する。
この研究の重要な発見の1つは、GANやスコアベース、拡散モデルを含む生成モデルの利用に向けた観測傾向である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning based approaches have been used to improve image quality in cone-beam computed tomography (CBCT), a medical imaging technique often used in applications such as image-guided radiation therapy, implant dentistry or orthopaedics. In particular, while deep learning methods have been applied to reduce various types of CBCT image artifacts arising from motion, metal objects, or low-dose acquisition, a comprehensive review summarizing the successes and shortcomings of these approaches, with a primary focus on the type of artifacts rather than the architecture of neural networks, is lacking in the literature. In this review, the data generation and simulation pipelines, and artifact reduction techniques are specifically investigated for each type of artifact. We provide an overview of deep learning techniques that have successfully been shown to reduce artifacts in 3D, as well as in time-resolved (4D) CBCT through the use of projection- and/or volume-domain optimizations, or by introducing neural networks directly within the CBCT reconstruction algorithms. Research gaps are identified to suggest avenues for future exploration. One of the key findings of this work is an observed trend towards the use of generative models including GANs and score-based or diffusion models, accompanied with the need for more diverse and open training datasets and simulations.
- Abstract(参考訳): 深層学習に基づくアプローチは、画像誘導放射線療法、インプラント歯科治療、整形外科などの応用でよく用いられる医療画像技術であるコーンビームCT(CBCT)の画質向上に用いられている。
特に,動作,金属オブジェクト,低線量取得によるCBCT画像アーティファクトのさまざまな種類の削減に深層学習手法が適用されているが,ニューラルネットワークのアーキテクチャではなく,アーティファクトのタイプに着目した,これらのアプローチの成功と欠点を要約した総合的なレビューは,文献的に欠落している。
本稿では,データ生成・シミュレーションパイプラインとアーティファクト削減技術について,各種類のアーティファクトについて詳細に検討する。
本稿では,3次元のアーティファクトの削減に成功している深層学習技術の概要を,プロジェクションやボリュームドメイン最適化,あるいはCBCT再構成アルゴリズムに直接ニューラルネットワークを導入することで,時間分解(4D)CBCTで紹介する。
研究のギャップは、将来の探査の道のりを示唆するものとして特定されている。
この研究の重要な発見の1つは、より多彩でオープンなトレーニングデータセットとシミュレーションの必要性とともに、GANやスコアベースまたは拡散モデルを含む生成モデルの使用に向けた観測傾向である。
関連論文リスト
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
過剰な電離放射線は、体に決定論的かつ有害な影響をもたらす可能性がある。
本稿では,CTプロジェクションの再構成を学習する深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-02-02T13:25:23Z) - Reducing Textural Bias Improves Robustness of Deep Segmentation CNNs [8.736194193307451]
自然画像の最近の知見は、深いニューラルモデルは、画像分類タスクを実行する際に、テクスチャバイアスを示す可能性があることを示唆している。
本研究の目的は, 深いセグメンテーションモデルの堅牢性と伝達性を高めるために, テクスチャバイアス現象に対処する方法を検討することである。
論文 参考訳(メタデータ) (2020-11-30T18:29:53Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
特定の対象領域の局所化と運動の推定は、外科的介入の際のナビゲーションの一般的な問題である。
OCT画像ボリュームの時間的ストリームを用いることで、深層学習に基づく動き推定性能が向上するかどうかを検討する。
モデル入力に4D情報を使用すると、合理的な推論時間を維持しながら性能が向上する。
論文 参考訳(メタデータ) (2020-04-21T15:43:01Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Learned Spectral Computed Tomography [0.0]
スペクトル光子結合型CTのためのディープラーニングイメージング法を提案する。
この方法は、ケース固有データを用いて訓練された2段階の学習された原始双対アルゴリズムの形を取る。
提案手法は, 限られたデータの場合であっても, 高速再構成機能と高速撮像性能により特徴付けられる。
論文 参考訳(メタデータ) (2020-03-09T13:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。