論文の概要: A 3D Facial Reconstruction Evaluation Methodology: Comparing Smartphone Scans with Deep Learning Based Methods Using Geometry and Morphometry Criteria
- arxiv url: http://arxiv.org/abs/2502.09425v1
- Date: Thu, 13 Feb 2025 15:47:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:15.849838
- Title: A 3D Facial Reconstruction Evaluation Methodology: Comparing Smartphone Scans with Deep Learning Based Methods Using Geometry and Morphometry Criteria
- Title(参考訳): 3次元顔画像再構成評価手法:幾何学的基準と形態的基準を用いた深層学習法との比較
- Authors: Álvaro Heredia-Lidón, Alejandro Moñux-Bernal, Alejandro González, Luis M. Echeverry-Quiceno, Max Rubert, Aroa Casado, María Esther Esteban, Mireia Andreu-Montoriol, Susanna Gallardo, Cristina Ruffo, Neus Martínez-Abadías, Xavier Sevillano,
- Abstract要約: 3次元顔形状解析は臨床応用の可能性から注目されている。
高度な3D顔認証システムの高コスト化は、その普及を制限し、低コストな取得と再構築方法の開発を推進している。
本研究では,形態素形状解析技術を統合することで,従来の幾何学的ベンチマークを超える新しい評価手法を提案する。
- 参考スコア(独自算出の注目度): 60.865754842465684
- License:
- Abstract: Three-dimensional (3D) facial shape analysis has gained interest due to its potential clinical applications. However, the high cost of advanced 3D facial acquisition systems limits their widespread use, driving the development of low-cost acquisition and reconstruction methods. This study introduces a novel evaluation methodology that goes beyond traditional geometry-based benchmarks by integrating morphometric shape analysis techniques, providing a statistical framework for assessing facial morphology preservation. As a case study, we compare smartphone-based 3D scans with state-of-the-art deep learning reconstruction methods from 2D images, using high-end stereophotogrammetry models as ground truth. This methodology enables a quantitative assessment of global and local shape differences, offering a biologically meaningful validation approach for low-cost 3D facial acquisition and reconstruction techniques.
- Abstract(参考訳): 3次元顔形状解析は臨床応用の可能性から注目されている。
しかし、高度な3D顔認証システムの高コスト化は、その普及を制限し、低コストな顔認証・再構築手法の開発を推進している。
本研究は, 形態素形状解析技術を統合することで, 従来の幾何学的ベンチマークを超える新しい評価手法を提案し, 顔形態素の保存を統計的に評価するための枠組みを提供する。
ケーススタディでは,スマートフォンを用いた3Dスキャンと2次元画像からの最先端の深層学習再構成手法を比較し,ハイエンドのステレオフォトグラムモデルを用いた。
本手法は, 低コストな3次元顔認証・再構成技術に対して, 生物学的に有意な検証手法を提供することにより, グローバル形状と局所形状の差異を定量的に評価することができる。
関連論文リスト
- Scalable Scene Modeling from Perspective Imaging: Physics-based Appearance and Geometry Inference [3.2229099973277076]
論文は3Dシーンモデリングをその最先端に進める貢献のごく一部を提示する。
一般的なディープラーニング手法とは対照的に、この論文は第一原理に従うアルゴリズムの開発を目的としている。
論文 参考訳(メタデータ) (2024-04-01T17:09:40Z) - Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning -- A Review [0.0]
コーンビームCT(CBCT)における画像品質向上のための深層学習技術
本稿では,3次元のアーティファクトの削減に成功している深層学習技術の概要と,時間分解(4D)CBCTについて概説する。
この研究の重要な発見の1つは、GANやスコアベース、拡散モデルを含む生成モデルの利用に向けた観測傾向である。
論文 参考訳(メタデータ) (2024-03-27T13:46:01Z) - Towards Head Computed Tomography Image Reconstruction Standardization
with Deep Learning Assisted Automatic Detection [5.288684776927016]
頭部CT像の3次元再構成は組織構造の複雑な空間的関係を解明する。
偏差のない最適な頭部CTスキャンを確保することは、技術者による低い位置決め、患者の身体的制約、CTスキャナの傾斜角度制限など、臨床環境では困難である。
そこで本研究では,手動による介入を低減し,精度と再現性を向上し,効率的な頭部CT画像の3D再構成法を提案する。
論文 参考訳(メタデータ) (2023-07-31T06:58:49Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
そこで本研究では,レンダリング可能な3次元顔形状とBRDFの再構成を,単一の"in-the-wild"画像から実現した最初の手法を提案する。
本手法は,1枚の低解像度画像から,高解像度の3次元顔の再構成を行う。
論文 参考訳(メタデータ) (2021-12-11T11:36:30Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDERは、教師なしの方法で単一の画像から詳細な顔形状を復元する新しい光度最適化手法である。
以前の作業とは対照的に、SIDERはデータセットの事前に依存せず、複数のビュー、照明変更、地上の真実の3D形状から追加の監視を必要としない。
論文 参考訳(メタデータ) (2021-08-11T22:34:53Z) - Survey on 3D face reconstruction from uncalibrated images [3.004265855622696]
顔の正確な表現を提供するにもかかわらず、3Dの顔画像は2D画像よりも複雑である。
3次元から2次元の顔の復元問題は誤りであり、解空間を制限するためには事前の知識が必要である。
本研究では,過去10年間に提案されてきた3次元顔の再構成手法について,制御不能な条件下で撮影された2次元画像のみを使用するものに着目した。
論文 参考訳(メタデータ) (2020-11-11T12:48:11Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
ポーズ誘導ネットワーク(PGN)を用いた単眼3次元顔再構成学習のための自己指導型学習手法を提案する。
まず,従来のパラメトリックな3次元顔の学習手法におけるポーズ推定のボトルネックを明らかにし,ポーズパラメータの推定に3次元顔のランドマークを活用することを提案する。
我々のデザインしたPGNでは、完全にラベル付けされた3Dランドマークと無制限にラベル付けされた未使用の顔画像で両方の顔から学習できる。
論文 参考訳(メタデータ) (2020-10-09T06:11:17Z) - Learning Complete 3D Morphable Face Models from Images and Videos [88.34033810328201]
本稿では,画像やビデオから顔形状,アルベド,表現の完全な3次元モデルを学ぶための最初のアプローチを提案する。
既存の手法よりも,学習モデルの方がより一般化し,高品質な画像ベース再構築につながることを示す。
論文 参考訳(メタデータ) (2020-10-04T20:51:23Z) - Cephalometric Landmark Regression with Convolutional Neural Networks on
3D Computed Tomography Data [68.8204255655161]
側方X線写真におけるケパロメトリ解析では, 横面への投射による3次元物体の構造を十分に利用していない。
本稿では,3次元畳み込みニューラルネットワーク(CNN)を用いたキーポイント回帰法について述べる。
本研究は,Frankfort Horizontal および cephalometric points の位置推定において,提案手法を広く評価し,その効果を実証した。
論文 参考訳(メタデータ) (2020-07-20T12:45:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。