論文の概要: Theoretical Guarantees for the Subspace-Constrained Tyler's Estimator
- arxiv url: http://arxiv.org/abs/2403.18658v2
- Date: Fri, 12 Apr 2024 20:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 20:00:41.602442
- Title: Theoretical Guarantees for the Subspace-Constrained Tyler's Estimator
- Title(参考訳): サブスペース制約されたタイラー推定器の理論的保証
- Authors: Gilad Lerman, Feng Yu, Teng Zhang,
- Abstract要約: この研究は、低次元の部分空間を復元するために設計されたサブスペース制約されたタイラー推定器(STE)を分析する。
弱い不リエ・アウトリアモデルを想定し、不リエの分数は、頑健な部分空間回復問題の計算硬度に繋がる分数よりも小さくすることができる。
- 参考スコア(独自算出の注目度): 14.626050539618861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work analyzes the subspace-constrained Tyler's estimator (STE) designed for recovering a low-dimensional subspace within a dataset that may be highly corrupted with outliers. It assumes a weak inlier-outlier model and allows the fraction of inliers to be smaller than a fraction that leads to computational hardness of the robust subspace recovery problem. It shows that in this setting, if the initialization of STE, which is an iterative algorithm, satisfies a certain condition, then STE can effectively recover the underlying subspace. It further shows that under the generalized haystack model, STE initialized by the Tyler's M-estimator (TME), can recover the subspace when the fraction of iniliers is too small for TME to handle.
- Abstract(参考訳): この研究は、データセット内の低次元部分空間の復元のために設計されたサブスペース制約されたタイラー推定器(STE)を分析する。
弱い不リエ・アウトリアモデルを想定し、不リエの分数は、頑健な部分空間回復問題の計算硬度に繋がる分数よりも小さくすることができる。
この設定では、反復アルゴリズムであるSTEの初期化が特定の条件を満たすならば、STEは基礎となる部分空間を効果的に回復することができる。
さらに、一般化された干し草モデルの下では、TylerのM-estimator (TME) によって初期化されたSTEが、TMEが扱えるほど小さすぎる場合、サブスペースを復元できることが示される。
関連論文リスト
- A Subspace-Constrained Tyler's Estimator and its Applications to Structure from Motion [14.626050539618861]
低次元部分空間の復元を目的とした部分空間拘束型タイラー推定器(STE)を提案する。
STEはタイラーのM推定器(TME)の融合であり、高速中央部分空間の変種である。
本研究では、基本行列のロバストな推定と外付けカメラの除去という2つの方法で、STEをStructure from Motion (SfM) の文脈に適用する。
論文 参考訳(メタデータ) (2024-04-17T17:39:59Z) - Sparse PCA with Oracle Property [115.72363972222622]
新規な正規化を伴うスパースPCAの半定緩和に基づく推定器群を提案する。
我々は、家族内の別の推定器が、スパースPCAの標準半定緩和よりも、より急激な収束率を達成することを証明した。
論文 参考訳(メタデータ) (2023-12-28T02:52:54Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Size Lowerbounds for Deep Operator Networks [0.27195102129094995]
我々は、ノイズの多いデータに対する経験的エラーを低減するために必要なDeepONetsのサイズに対して、データ依存の低いバウンドを確立する。
固定モデルサイズにおいて、この共通出力次元の増大を利用してトレーニング誤差の単調な低減を実現するためには、トレーニングデータのサイズが少なくとも2次的にスケールする必要があることを実証する。
論文 参考訳(メタデータ) (2023-08-11T18:26:09Z) - On the Size and Approximation Error of Distilled Sets [57.61696480305911]
カーネル・インジェクション・ポイント(Kernel Inducing Points)などのデータセット蒸留のカーネル・リッジ回帰に基づく手法について理論的に考察する。
我々は、RFF空間におけるその解が元のデータの解と一致するように、元の入力空間に小さな一組のインスタンスが存在することを証明した。
KRR溶液は、全入力データに最適化されたKRR溶液に対して近似を与えるこの蒸留されたインスタンスセットを用いて生成することができる。
論文 参考訳(メタデータ) (2023-05-23T14:37:43Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
我々は、強化学習(MBRL)のための新しいモデルベースアプローチを開発する。
ターゲット遷移モデルの仮定を緩和し、混合モデルの一般的な族に属する。
連続的な制御環境では、壁時計の時間を最大50%削減することができる。
論文 参考訳(メタデータ) (2022-06-02T17:27:49Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - A Sharp Blockwise Tensor Perturbation Bound for Orthogonal Iteration [23.308822706415867]
高次直交反復(HOOI)に対するブロックワイドテンソル摂動境界を確立する。
モード-$k$特異部分空間推定の上限は、摂動と信号強度のブロックワイズ誤差を特徴とする量に一側収束することを示す。
一つの反復しか持たない一段階 HOOI がテンソル再構成の点でも最適であり,計算コストの低減に有効であることを示す。
論文 参考訳(メタデータ) (2020-08-06T03:01:28Z) - Robust Compressed Sensing using Generative Models [98.64228459705859]
本稿では,Median-of-Means (MOM) にヒントを得たアルゴリズムを提案する。
我々のアルゴリズムは、外れ値が存在する場合でも、重み付きデータの回復を保証する。
論文 参考訳(メタデータ) (2020-06-16T19:07:41Z) - On the Convergence of Stochastic Gradient Descent with Low-Rank
Projections for Convex Low-Rank Matrix Problems [19.24470467199451]
本研究では, 凸緩和に有効な凸最適化問題の解法として, SGD (Gradient Descent) の利用を再検討する。
我々は,SGDが低ランク行列回復問題の大規模凸緩和に実際に適用可能であることを示した。
論文 参考訳(メタデータ) (2020-01-31T06:00:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。