Probabilistic Model Checking of Stochastic Reinforcement Learning Policies
- URL: http://arxiv.org/abs/2403.18725v1
- Date: Wed, 27 Mar 2024 16:15:21 GMT
- Title: Probabilistic Model Checking of Stochastic Reinforcement Learning Policies
- Authors: Dennis Gross, Helge Spieker,
- Abstract summary: We introduce a method to verify reinforcement learning (RL) policies.
This approach is compatible with any RL algorithm as long as the algorithm and its corresponding environment collectively adhere to the Markov property.
Our results show that our method is suited to verify RL policies.
- Score: 5.923818043882103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method to verify stochastic reinforcement learning (RL) policies. This approach is compatible with any RL algorithm as long as the algorithm and its corresponding environment collectively adhere to the Markov property. In this setting, the future state of the environment should depend solely on its current state and the action executed, independent of any previous states or actions. Our method integrates a verification technique, referred to as model checking, with RL, leveraging a Markov decision process, a trained RL policy, and a probabilistic computation tree logic (PCTL) formula to build a formal model that can be subsequently verified via the model checker Storm. We demonstrate our method's applicability across multiple benchmarks, comparing it to baseline methods called deterministic safety estimates and naive monolithic model checking. Our results show that our method is suited to verify stochastic RL policies.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
We propose a novel $K$-nearest neighbor reparametric procedure for estimating the performance of a policy from historical data.
Our analysis allows for the sampling of entire episodes, as is common practice in most applications.
Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization, and does not explicitly assume a parametric model for the environment's dynamics.
arXiv Detail & Related papers (2023-06-07T23:55:12Z) - Learning Robust Controllers Via Probabilistic Model-Based Policy Search [2.886634516775814]
We investigate whether controllers learned in such a way are robust and able to generalize under small perturbations of the environment.
We show that enforcing a lower bound to the likelihood noise in the Gaussian Process dynamics model regularizes the policy updates and yields more robust controllers.
arXiv Detail & Related papers (2021-10-26T11:17:31Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
We propose a methodology for analyzing POMCP policies by inspecting their traces.
The proposed method explores local properties of policy behavior to identify unexpected decisions.
We evaluate our approach on Tiger, a standard benchmark for POMDPs, and a real-world problem related to mobile robot navigation.
arXiv Detail & Related papers (2020-12-23T15:09:28Z) - Bayes-Adaptive Deep Model-Based Policy Optimisation [4.675381958034012]
We introduce a Bayesian (deep) model-based reinforcement learning method (RoMBRL) that can capture model uncertainty to achieve sample-efficient policy optimisation.
We propose to formulate the model-based policy optimisation problem as a Bayes-adaptive Markov decision process (BAMDP)
We show that RoMBRL outperforms existing approaches on many challenging control benchmark tasks in terms of sample complexity and task performance.
arXiv Detail & Related papers (2020-10-29T21:17:25Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Mixed Reinforcement Learning with Additive Stochastic Uncertainty [19.229447330293546]
Reinforcement learning (RL) methods often rely on massive exploration data to search optimal policies, and suffer from poor sampling efficiency.
This paper presents a mixed RL algorithm by simultaneously using dual representations of environmental dynamics to search the optimal policy.
The effectiveness of the mixed RL is demonstrated by a typical optimal control problem of non-affine nonlinear systems.
arXiv Detail & Related papers (2020-02-28T08:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.