論文の概要: Many-Objective Evolutionary Influence Maximization: Balancing Spread, Budget, Fairness, and Time
- arxiv url: http://arxiv.org/abs/2403.18755v1
- Date: Wed, 27 Mar 2024 16:54:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 15:59:48.031558
- Title: Many-Objective Evolutionary Influence Maximization: Balancing Spread, Budget, Fairness, and Time
- Title(参考訳): 多目的進化的影響の最大化:分散、予算、公正、時間
- Authors: Elia Cunegatti, Leonardo Lucio Custode, Giovanni Iacca,
- Abstract要約: インフルエンス・最大化(IM)問題は、情報伝達を最大限に広めることのできるグラフ内のノードの集合を見つけ出そうとする。
この問題はNPハードであることが知られており、通常は第2の目的を最適化する影響(スプレッド)を最大化して研究される。
本研究では,シードセットサイズの影響と最小化に基づいて,予算の公平性,コミュニティ,時間といったIM固有の目的関数を最適化した最初のケーススタディを提案する。
- 参考スコア(独自算出の注目度): 3.195234044113248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Influence Maximization (IM) problem seeks to discover the set of nodes in a graph that can spread the information propagation at most. This problem is known to be NP-hard, and it is usually studied by maximizing the influence (spread) and, optionally, optimizing a second objective, such as minimizing the seed set size or maximizing the influence fairness. However, in many practical scenarios multiple aspects of the IM problem must be optimized at the same time. In this work, we propose a first case study where several IM-specific objective functions, namely budget, fairness, communities, and time, are optimized on top of the maximization of influence and minimization of the seed set size. To this aim, we introduce MOEIM (Many-Objective Evolutionary Algorithm for Influence Maximization) a Multi-Objective Evolutionary Algorithm (MOEA) based on NSGA-II incorporating graph-aware operators and a smart initialization. We compare MOEIM in two experimental settings, including a total of nine graph datasets, two heuristic methods, a related MOEA, and a state-of-the-art Deep Learning approach. The experiments show that MOEIM overall outperforms the competitors in most of the tested many-objective settings. To conclude, we also investigate the correlation between the objectives, leading to novel insights into the topic. The codebase is available at https://github.com/eliacunegatti/MOEIM.
- Abstract(参考訳): インフルエンス・最大化(IM)問題は、情報伝達を最大限に広めることのできるグラフ内のノードの集合を見つけ出そうとする。
この問題はNPハードであることが知られており、通常、影響(スプレッド)を最大化し、任意に第二の目的を最適化することで研究される。
しかし、多くの実践的なシナリオでは、IM問題の複数の側面を同時に最適化する必要がある。
本研究では,シードセットサイズの影響の最大化と最小化に加えて,予算,公平性,コミュニティ,時間といったIM固有の目的関数が最適化された最初のケーススタディを提案する。
そこで本研究では、NSGA-IIに基づくMOEIM(Multi-Objective Evolutionary Algorithm for Influence Maximization)を提案する。
我々は,9つのグラフデータセット,2つのヒューリスティック手法,関連するMOEA,最先端のDeep Learningアプローチを含む2つの実験的な設定でMOEIMを比較した。
実験の結果、MOEIMはテストされた多目的設定の大部分において、総合的に競合他社を上回っていることがわかった。
結論として,目的間の相関についても検討し,新たな知見を得た。
コードベースはhttps://github.com/eliacunegatti/MOEIMで公開されている。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Influence Maximization via Graph Neural Bandits [54.45552721334886]
IM問題を多ラウンド拡散キャンペーンに設定し,影響を受けやすいユーザ数を最大化することを目的とした。
IM-GNB(Influence Maximization with Graph Neural Bandits)を提案する。
論文 参考訳(メタデータ) (2024-06-18T17:54:33Z) - Influence Maximization in Hypergraphs using Multi-Objective Evolutionary Algorithms [2.726292320658314]
影響最大化(IM)問題はグラフ上のよく知られたNPハード問題である。
ハイパーグラフ上のIM問題に対する多目的EAを提案する。
論文 参考訳(メタデータ) (2024-05-16T15:31:28Z) - Common pitfalls to avoid while using multiobjective optimization in machine learning [1.2499537119440245]
機械学習(ML)における多目的最適化(MOO)の適用の探求への関心が高まっている。
その可能性にもかかわらず、MOOを使いたいML実践者のエントリーレベルガイドとして機能する十分な文献が不足している。
従来の研究、特に深層学習におけるMOO(物理情報ニューラルネットワーク(PINN)を手がかりに)に関する研究を批判的にレビューし、MLにおけるMOOの原則をよりよく把握する必要性を強調した誤解を特定する。
論文 参考訳(メタデータ) (2024-05-02T17:12:25Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - Towards Running Time Analysis of Interactive Multi-objective
Evolutionary Algorithms [23.815981112784552]
本稿では,実際のiMOEAに対して,最初の実行時間解析(EAの本質的理論的側面)を提供する。
我々は、OneMinMaxとOneJumpZeroJumpの問題を解くために、よく開発された対話型NSGA-IIのランニングタイムが、それぞれ$O(n log n)$と$O(nk)$であることを示す。
論文 参考訳(メタデータ) (2023-10-12T14:57:47Z) - Deep Graph Representation Learning and Optimization for Influence
Maximization [10.90744025490539]
インフルエンサー(IM)は、ソーシャルネットワークから初期ユーザのセットを選択して、影響を受けたユーザの期待人数を最大化する。
本稿では,シードセットの潜在表現を生成的に特徴付けるための新しいフレームワークであるDeepIMを提案する。
また、フレキシブルなノード分散性に基づく予算制約の下で最適なシードセットを推論する新たな目的関数を設計する。
論文 参考訳(メタデータ) (2023-05-01T15:45:01Z) - GraMeR: Graph Meta Reinforcement Learning for Multi-Objective Influence
Maximization [1.7311053765541482]
インフルエンス(IM)とは、ネットワーク内のシードノードと呼ばれるノードのサブセットを特定する問題である(グラフ)。
IMには、バイラルマーケティング、疫病対策、センサー配置、その他のネットワーク関連タスクなど、数多くの応用がある。
我々は、本質的および影響的アクティベーションの両方を扱うマルコフ決定プロセスとして、一般的なIM問題を開発する。
論文 参考訳(メタデータ) (2022-05-30T03:48:51Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
モデル・ア・メタラーニング(MAML)は、メタラーニングを二段階最適化問題として定式化し、内部レベルが各サブタスクを、共有された事前に基づいて解決する。
学習と教師あり学習の両方においてMAMLが達成した定常点の最適性を特徴付ける。
論文 参考訳(メタデータ) (2020-06-23T17:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。