論文の概要: Bridging Generative Networks with the Common Model of Cognition
- arxiv url: http://arxiv.org/abs/2403.18827v1
- Date: Thu, 25 Jan 2024 05:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 02:34:48.480767
- Title: Bridging Generative Networks with the Common Model of Cognition
- Title(参考訳): 認知の共通モデルによる生成ネットワークのブリッジ
- Authors: Robert L. West, Spencer Eckler, Brendan Conway-Smith, Nico Turcas, Eilene Tomkins-Flanagan, Mary Alexandria Kelly,
- Abstract要約: 本稿では,認知共通モデル(Common Model of Cognition)を大規模ネットワークモデルに適用するための理論的枠組みを提案する。
これは、Common Model内のモジュールを中央生産システムに周辺するシャドウ生産システムに再構成することで実現できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a theoretical framework for adapting the Common Model of Cognition to large generative network models within the field of artificial intelligence. This can be accomplished by restructuring modules within the Common Model into shadow production systems that are peripheral to a central production system, which handles higher-level reasoning based on the shadow productions' output. Implementing this novel structure within the Common Model allows for a seamless connection between cognitive architectures and generative neural networks.
- Abstract(参考訳): 本稿では,人工知能分野における大規模生成ネットワークモデルに認知共通モデルを適用するための理論的枠組みについて述べる。
これは、共通モデル内のモジュールを、シャドウ生産の出力に基づいて高いレベルの推論を処理する中央生産システムに周知なシャドウ生産システムに再構成することで達成できる。
Common Model内にこの新しい構造を実装することで、認知アーキテクチャと生成ニューラルネットワークのシームレスな接続が可能になる。
関連論文リスト
- A method for quantifying the generalization capabilities of generative models for solving Ising models [5.699467840225041]
我々は、ハミング距離正規化器を用いて、VANと組み合わせた様々なネットワークアーキテクチャの一般化能力を定量化する。
フィードフォワードニューラルネットワーク,リカレントニューラルネットワーク,グラフニューラルネットワークなど,VANと組み合わせたネットワークアーキテクチャの数値実験を行う。
本手法は,大規模Isingモデルの解法において,最適なネットワークアーキテクチャを探索するニューラルネットワーク探索の分野を支援する上で,非常に重要である。
論文 参考訳(メタデータ) (2024-05-06T12:58:48Z) - Machine learning for structural design models of continuous beam systems via influence zones [3.284878354988896]
この研究は、逆問題の観点から連続ビームシステムのための機械学習構造設計モデルを開発する。
本研究の目的は,任意のシステムサイズを持つ連続ビームシステムの断面積要求を予測できる非定常構造設計モデルを概念化することである。
論文 参考訳(メタデータ) (2024-03-14T14:53:18Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Unifying Generative Models with GFlowNets [85.38102320953551]
本稿では, 既存の深層生成モデルとGFlowNetフレームワークの関連性について, 重なり合う特性に光を当てて概説する。
これは、トレーニングと推論アルゴリズムを統一する手段を提供し、生成モデルの集合を構築するためのルートを提供する。
論文 参考訳(メタデータ) (2022-09-06T15:52:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Model-Based Machine Learning for Communications [110.47840878388453]
モデルベースのアルゴリズムと機械学習をハイレベルな視点で組み合わせるための既存の戦略を見直します。
通信受信機の基本的なタスクの一つであるシンボル検出に注目する。
論文 参考訳(メタデータ) (2021-01-12T19:55:34Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
数値実験において,本フレームワークの有効性を実証し,ベンチマークや実世界の応用において,そのメリットを実証する。
論文 参考訳(メタデータ) (2020-02-13T21:01:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。