Predicting risk of cardiovascular disease using retinal OCT imaging
- URL: http://arxiv.org/abs/2403.18873v2
- Date: Tue, 07 Jan 2025 14:52:34 GMT
- Title: Predicting risk of cardiovascular disease using retinal OCT imaging
- Authors: Cynthia Maldonado-Garcia, Rodrigo Bonazzola, Enzo Ferrante, Thomas H Julian, Panagiotis I Sergouniotis, Nishant Ravikumara, Alejandro F Frangi,
- Abstract summary: Cardiovascular diseases (CVD) are the leading cause of death globally.
Optical coherence tomography ( OCT) has gained recognition as a potential tool for early CVD risk prediction.
We investigated the potential of OCT as an additional imaging technique to predict future CVD events.
- Score: 40.71667870702634
- License:
- Abstract: Cardiovascular diseases (CVD) are the leading cause of death globally. Non-invasive, cost-effective imaging techniques play a crucial role in early detection and prevention of CVD. Optical coherence tomography (OCT) has gained recognition as a potential tool for early CVD risk prediction, though its use remains underexplored. In this study, we investigated the potential of OCT as an additional imaging technique to predict future CVD events. We analysed retinal OCT data from the UK Biobank. The dataset included 612 patients who suffered a myocardial infarction (MI) or stroke within five years of imaging and 2,234 controls without CVD (total: 2,846 participants). A self-supervised deep learning approach based on Variational Autoencoders (VAE) was used to extract low-dimensional latent representations from high-dimensional 3D OCT images, capturing distinct features of retinal layers. These latent features, along with clinical data, were used to train a Random Forest (RF) classifier to differentiate between patients at risk of future CVD events (MI or stroke) and healthy controls. Our model achieved an AUC of 0.75, sensitivity of 0.70, specificity of 0.70, and accuracy of 0.70, outperforming the QRISK3 score (the third version of the QRISK cardiovascular disease risk prediction algorithm; AUC = 0.60, sensitivity = 0.60, specificity = 0.55, accuracy = 0.55). The choroidal layer in OCT images was identified as a key predictor of future CVD events, revealed through a novel model explainability approach. This study demonstrates that retinal OCT imaging is a cost-effective, non-invasive alternative for predicting CVD risk, offering potential for widespread application in optometry practices and hospitals.
Related papers
- A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans [12.652540031719571]
We propose a novel joint representation that integrates discrete quantitative biomarkers and continuous deep features extracted from chest CT scans.
Our method substantially improves CVD risk predictive performance and offers individual contribution analysis of each biomarker.
arXiv Detail & Related papers (2024-10-24T10:06:45Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - A hybrid CNN-RNN approach for survival analysis in a Lung Cancer
Screening study [17.26942882598847]
We present a hybrid CNN-RNN approach to investigate long-term survival of subjects in a lung cancer screening study.
The models were trained on subjects who underwent cardiovascular and respiratory deaths.
The Cox neural network can achieve an IPCW C-index of 0.75 on the internal dataset and 0.69 on an external dataset.
arXiv Detail & Related papers (2023-03-19T23:00:41Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Cervical Optical Coherence Tomography Image Classification Based on
Contrastive Self-Supervised Texture Learning [2.674926127069043]
This study aims to develop a computer-aided diagnosis (CADx) approach to classifying in-vivo cervical OCT images based on self-supervised learning.
Besides high-level semantic features extracted by a convolutional neural network (CNN), the proposed CADx approach leverages unlabeled cervical OCT images' texture features learned by contrastive texture learning.
arXiv Detail & Related papers (2021-08-11T07:52:59Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.