Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
- URL: http://arxiv.org/abs/2403.18963v3
- Date: Tue, 21 Jan 2025 02:28:29 GMT
- Title: Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
- Authors: Gabriel A. Silva,
- Abstract summary: We introduce and solve a novel problem class related to dynamics on large-scale networks relevant to neurobiology and machine learning.
We show that this class of problems can be formulated and structured to take advantage of quantum superposition and solved efficiently using the Deutsch-Jozsa and Grover quantum algorithms.
- Score: 0.0
- License:
- Abstract: The exploration of new problem classes for quantum computation is an active area of research. In this paper, we introduce and solve a novel problem class related to dynamics on large-scale networks relevant to neurobiology and machine learning. Specifically, we ask if a network can sustain inherent dynamic activity beyond some arbitrary observation time or if the activity ceases through quiescence or saturation via an epileptic-like state. We show that this class of problems can be formulated and structured to take advantage of quantum superposition and solved efficiently using the Deutsch-Jozsa and Grover quantum algorithms. To do so, we extend their functionality to address the unique requirements of how input (sub)sets into the algorithms must be mathematically structured while simultaneously constructing the inputs so that measurement outputs can be interpreted as meaningful properties of the network dynamics. This, in turn, allows us to answer the question we pose.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
We propose fully quantum recurrent neural networks, based on dissipative quantum neural networks.
We demonstrate the potential of these algorithms to learn complex quantum processes with memory.
Numerical simulations indicate that our quantum recurrent neural networks exhibit a striking ability to generalise from small training sets.
arXiv Detail & Related papers (2023-01-19T16:58:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Machine-learning assisted quantum control in random environment [3.8580539160777625]
We introduce proof of the concept and analyze neural network-based machine learning algorithm.
We show that convolutional neural networks are able to solve this problem as they can recognize the disorder.
We have shown that the accuracy of the proposed algorithm is enhanced by a higher-dimensional mapping of the disorder pattern.
arXiv Detail & Related papers (2022-02-21T15:12:39Z) - Quantum activation functions for quantum neural networks [0.0]
We show how to approximate any analytic function to any required accuracy without the need to measure the states encoding the information.
Our results recast the science of artificial neural networks in the architecture of gate-model quantum computers.
arXiv Detail & Related papers (2022-01-10T23:55:49Z) - Unsupervised learning of correlated quantum dynamics on disordered
lattices [0.0]
Quantum particles co-propagating on disordered lattices develop complex non-classical correlations due to an interplay between quantum statistics, inter-particle interactions, and disorder.
We present a deep learning algorithm capable of learning these correlations and identifying the physical control parameters in a completely unsupervised manner.
arXiv Detail & Related papers (2021-10-13T17:48:11Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.