論文の概要: Quantum to Classical Neural Network Transfer Learning Applied to Drug Toxicity Prediction
- arxiv url: http://arxiv.org/abs/2403.18997v1
- Date: Wed, 27 Mar 2024 20:32:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 18:01:50.988302
- Title: Quantum to Classical Neural Network Transfer Learning Applied to Drug Toxicity Prediction
- Title(参考訳): 薬物毒性予測に応用した量子-古典的ニューラルネットワーク変換学習
- Authors: Anthony M. Smaldone, Victor S. Batista,
- Abstract要約: 毒性 (Toxicity) は、不規則な数の薬物が命を救うために使用されるのを防ぐブロックである。
本稿では、古典的ニューラルネットワークの動作を模倣した量子回路設計を用いて、薬物毒性を予測するためのハイブリッド量子古典ニューラルネットワークを提案する。
モデルの全古典的な$mathcalO(n3)$アナログに対して、コンメンシュレートな予測精度が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Toxicity is a roadblock that prevents an inordinate number of drugs from being used in potentially life-saving applications. Deep learning provides a promising solution to finding ideal drug candidates; however, the vastness of chemical space coupled with the underlying $\mathcal{O}(n^3)$ matrix multiplication means these efforts quickly become computationally demanding. To remedy this, we present a hybrid quantum-classical neural network for predicting drug toxicity, utilizing a quantum circuit design that mimics classical neural behavior by explicitly calculating matrix products with complexity $\mathcal{O}(n^2)$. Leveraging the Hadamard test for efficient inner product estimation rather than the conventionally used swap test, we reduce the number qubits by half and remove the need for quantum phase estimation. Directly computing matrix products quantum mechanically allows for learnable weights to be transferred from a quantum to a classical device for further training. We apply our framework to the Tox21 dataset and show that it achieves commensurate predictive accuracy to the model's fully classical $\mathcal{O}(n^3)$ analog. Additionally, we demonstrate the model continues to learn, without disruption, once transferred to a fully classical architecture. We believe combining the quantum advantage of reduced complexity and the classical advantage of noise-free calculation will pave the way to more scalable machine learning models.
- Abstract(参考訳): 毒性 (Toxicity) は、不規則な数の薬物が命を救うために使用されるのを防ぐブロックである。
深層学習は理想的な薬物候補を見つけるための有望な解決策を提供するが、基礎となる$\mathcal{O}(n^3)$行列乗算と化学空間の広さは、これらの取り組みが急速に計算的に要求されることを意味する。
これを解決するために,従来のニューラルネットワーク設計を模倣した量子回路設計を用いて,複雑度$\mathcal{O}(n^2)$の行列積を明示的に計算し,薬物毒性を予測するハイブリッド量子古典ニューラルネットワークを提案する。
従来のスワップ試験よりも効率的に内部積推定を行うためにアダマール試験を利用することで、量子位相推定の必要性を減らし、量子ビット数を半減する。
量子行列製品を直接計算することで、学習可能な重量を量子から古典的なデバイスに転送し、さらなるトレーニングを行うことができる。
我々は、Tox21データセットにフレームワークを適用し、モデルの全古典的な$\mathcal{O}(n^3)$アナログに対して、コンメジュレートな予測精度を達成することを示す。
さらに、モデルがディスラプションなしで学習し続け、一度完全に古典的なアーキテクチャに移行したことを実証する。
複雑性の低減による量子的優位性とノイズフリー計算の古典的優位性を組み合わせることで、よりスケーラブルな機械学習モデルへの道が開けると考えています。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent [37.59299233291882]
本稿では,ニュートンのGDを用いたニューラルネットワークトレーニングの高速化を目的とした,ハイブリッド量子古典スケジューラQ-Newtonを提案する。
Q-Newtonは量子と古典的な線形解法を協調する合理化スケジューリングモジュールを使用している。
評価の結果,Q-Newtonは一般的な量子機械と比較してトレーニング時間を大幅に短縮できる可能性が示された。
論文 参考訳(メタデータ) (2024-04-30T23:55:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - A General Approach to Dropout in Quantum Neural Networks [1.5771347525430772]
オーバーフィッティング(Overfitting)とは、与えられたモデルがトレーニングデータを過度に学習した場合に発生する現象である。
量子ニューラルネットワークが学習モデルとして登場したことで、オーバーフィッティングが問題になるかもしれない。
論文 参考訳(メタデータ) (2023-10-06T09:39:30Z) - Leveraging Analog Quantum Computing with Neutral Atoms for Solvent
Configuration Prediction in Drug Discovery [0.0]
タンパク質中の平衡溶媒分子構成をサンプリングできる量子アルゴリズムを導入する。
連続溶媒分布を予測可能な3次元参照相互作用サイトモデル(3D-RISM)に量子配置戦略を組み合わせる。
これらのアルゴリズムは、分子モデリングと薬物設計におけるアナログ量子コンピューティングの応用への新たな道を開く。
論文 参考訳(メタデータ) (2023-09-21T14:50:45Z) - Quantum simulation of battery materials using ionic pseudopotentials [0.0]
疑似ポテンシャルを用いた量子アルゴリズムを導入し、量子コンピュータ上で周期材料をシミュレートするコストを削減する。
平面波に基づくハミルトニアンの第1量子化表現を用いた量子化に基づく量子位相推定アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-02-15T23:02:06Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Scalable Variational Quantum Circuits for Autoencoder-based Drug
Discovery [8.871042314510788]
変分オートエンコーダは、既存の分子データセットに基づいて化学空間を探索するコンピュータ支援設計手法の1つである。
本稿では,創薬分子を同時に再構成・サンプリングするためのスケーラブルな量子生成オートエンコーダ(SQ-VAE)と,それに対応するバニラ変種(SQ-AE)について述べる。
論文 参考訳(メタデータ) (2021-11-15T00:26:19Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。