論文の概要: Sequential Inference of Hospitalization ElectronicHealth Records Using Probabilistic Models
- arxiv url: http://arxiv.org/abs/2403.19011v1
- Date: Wed, 27 Mar 2024 21:06:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:52:05.759415
- Title: Sequential Inference of Hospitalization ElectronicHealth Records Using Probabilistic Models
- Title(参考訳): 確率モデルを用いた入院電子カルテの逐次推定
- Authors: Alan D. Kaplan, Priyadip Ray, John D. Greene, Vincent X. Liu,
- Abstract要約: 本研究では,入院電子健康記録(EHR)データに含まれる複数の任意長配列に対する確率的教師なしモデルの設計を行う。
このモデルは潜在変数構造を使用し、薬物、診断、実験室のテスト、神経学的評価、薬物の間の複雑な関係を捉えている。
推論アルゴリズムは、部分的データを用いて、その長さや特定の値の存在を含む完全なシーケンスの特性を推測する。
- 参考スコア(独自算出の注目度): 3.2988476179015005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the dynamic hospital setting, decision support can be a valuable tool for improving patient outcomes. Data-driven inference of future outcomes is challenging in this dynamic setting, where long sequences such as laboratory tests and medications are updated frequently. This is due in part to heterogeneity of data types and mixed-sequence types contained in variable length sequences. In this work we design a probabilistic unsupervised model for multiple arbitrary-length sequences contained in hospitalization Electronic Health Record (EHR) data. The model uses a latent variable structure and captures complex relationships between medications, diagnoses, laboratory tests, neurological assessments, and medications. It can be trained on original data, without requiring any lossy transformations or time binning. Inference algorithms are derived that use partial data to infer properties of the complete sequences, including their length and presence of specific values. We train this model on data from subjects receiving medical care in the Kaiser Permanente Northern California integrated healthcare delivery system. The results are evaluated against held-out data for predicting the length of sequences and presence of Intensive Care Unit (ICU) in hospitalization bed sequences. Our method outperforms a baseline approach, showing that in these experiments the trained model captures information in the sequences that is informative of their future values.
- Abstract(参考訳): ダイナミックな病院環境では、意思決定支援は患者の成果を改善する貴重なツールとなり得る。
このダイナミックな環境では、実験室のテストや薬品などの長いシーケンスを頻繁に更新するデータ駆動推論が困難である。
これは、データ型と可変長列に含まれる混合シーケンス型の不均一性による部分もある。
本研究では,入院電子健康記録(EHR)データに含まれる複数の任意長配列に対する確率的教師なしモデルの設計を行う。
このモデルは潜在変数構造を使用し、薬物、診断、実験室のテスト、神経学的評価、薬物の間の複雑な関係を捉えている。
損失のある変換や時間ビンニングを必要とせずに、オリジナルのデータでトレーニングすることができる。
推論アルゴリズムは、部分的データを用いて、その長さや特定の値の存在を含む完全なシーケンスの特性を推測する。
我々は,北カリフォルニアのKaiser Permanente(カイザー・パーマネンテ)統合型ヘルスケアデリバリーシステムにおいて,医療を受ける被験者のデータに基づいて,このモデルをトレーニングする。
その結果,入院ベッドにおける集中治療室 (ICU) の長さと存在を予測するための保留データと比較した。
提案手法はベースライン手法よりも優れており,これらの実験では,学習したモデルが将来の値を示すシーケンスで情報をキャプチャすることを示す。
関連論文リスト
- COPER: Continuous Patient State Perceiver [13.735956129637945]
本研究では,ERHにおける不規則な時系列に対処するため,COPERと呼ばれる新規患者状態パーセンシバーモデルを提案する。
ニューラル常微分方程式(ODE)は、COPERが通常の時系列を生成してPerceiverモデルに供給するのに役立ちます。
提案モデルの性能評価には,MIMIC-IIIデータセット上での院内死亡予測タスクを用いる。
論文 参考訳(メタデータ) (2022-08-05T14:32:57Z) - A Variational Autoencoder for Heterogeneous Temporal and Longitudinal
Data [0.3749861135832073]
近年,経時的および経時的データを処理可能なVAEの拡張は,医療,行動モデリング,予測保守に応用されている。
本研究では,既存の時間的および縦的VAEをヘテロジニアスデータに拡張するヘテロジニアス縦型VAE(HL-VAE)を提案する。
HL-VAEは高次元データセットに対する効率的な推論を提供し、連続、カウント、カテゴリー、順序データのための可能性モデルを含む。
論文 参考訳(メタデータ) (2022-04-20T10:18:39Z) - Unsupervised Probabilistic Models for Sequential Electronic Health
Records [3.8015092217142223]
モデルは、データの基盤構造をエンコードする遅延変数の階層化セットで構成されている。
我々は,北カリフォルニアのKaiser Permanente(カイザー・パーマネンテ)統合型ヘルスケアデリバリーシステムにおいて,医療を受ける被験者のエピソードデータに基づいて,このモデルを訓練する。
トレーニングされたモデルの結果として得られる特性は、これらの複雑で多面的なデータから新しい洞察を生み出す。
論文 参考訳(メタデータ) (2022-04-15T02:11:44Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
本稿では,患者が訪問する時間スタンプと滞在時間との間に不規則な間隔を対応させるSETORと呼ばれる,エンドツーエンドの頑健なトランスフォーマーモデルを提案する。
2つの実世界の医療データセットで実施された実験により、シーケンシャルな診断予測モデルSETORは、従来の最先端のアプローチよりも優れた予測結果が得られることが示された。
論文 参考訳(メタデータ) (2021-09-07T13:09:55Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion Model for Imputation (CSDI) は、観測データに条件付きスコアベース拡散モデルを利用する新しい時系列計算法である。
CSDIは、一般的なパフォーマンスメトリクスの既存の確率論的計算方法よりも40-70%改善されている。
さらに、Cは最先端の決定論的計算法と比較して誤差を5-20%削減する。
論文 参考訳(メタデータ) (2021-07-07T22:20:24Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
不足値を含む高次元データを解析するための一般的なアプローチは、変分オートエンコーダ(VAE)を用いた低次元表現を学習することである。
標準的なVAEは、学習した表現はi.d.であり、データサンプル間の相関を捉えることができないと仮定する。
本稿では,多出力加法的ガウス過程(GP)を用いて,構造化された低次元表現を学習するVAEの能力を拡張した縦型VAE(L-VAE)を提案する。
我々の手法は時間変化の共有効果とランダム効果の両方に同時に対応でき、構造化された低次元表現を生成する。
論文 参考訳(メタデータ) (2020-06-17T10:30:14Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。