論文の概要: Detecting Generative Parroting through Overfitting Masked Autoencoders
- arxiv url: http://arxiv.org/abs/2403.19050v3
- Date: Wed, 19 Jun 2024 19:53:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 04:39:52.067618
- Title: Detecting Generative Parroting through Overfitting Masked Autoencoders
- Title(参考訳): マスクオートエンコーダのオーバーフィットによる生成的パロイングの検出
- Authors: Saeid Asgari Taghanaki, Joseph Lambourne,
- Abstract要約: 本研究は,Masked Autoencoder (MAE) を用いた新しい手法を提案する。
トレーニングデータセットの平均損失に基づいて検出しきい値を確立し、修正データセットにおけるオウム内容の正確な識別を可能にする。
予備評価の結果は有望な結果を示し,提案手法が倫理的利用を確実にし,生成モデルの法的遵守を強化する可能性を示唆している。
- 参考スコア(独自算出の注目度): 2.6966307157568425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of generative AI models has revolutionized digital content creation, yet it introduces challenges in maintaining copyright integrity due to generative parroting, where models mimic their training data too closely. Our research presents a novel approach to tackle this issue by employing an overfitted Masked Autoencoder (MAE) to detect such parroted samples effectively. We establish a detection threshold based on the mean loss across the training dataset, allowing for the precise identification of parroted content in modified datasets. Preliminary evaluations demonstrate promising results, suggesting our method's potential to ensure ethical use and enhance the legal compliance of generative models.
- Abstract(参考訳): 生成型AIモデルの出現は、デジタルコンテンツ作成に革命をもたらしたが、生成型パロットによる著作権の完全性を維持する上での課題を導入している。
本研究は, 過度に適合したMasked Autoencoder (MAE) を用いて, この課題に対処する新しい手法を提案する。
トレーニングデータセットの平均損失に基づいて検出しきい値を確立し、修正データセットにおけるオウム内容の正確な識別を可能にする。
予備評価の結果は有望な結果を示し,提案手法が倫理的利用を確実にし,生成モデルの法的遵守を強化する可能性を示唆している。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - Generative Models are Self-Watermarked: Declaring Model Authentication
through Re-Generation [17.88043926057354]
データオーナシップの検証は、特に生成したデータの不正な再利用の場合、非常に困難な問題を引き起こします。
私たちの研究は、個々のサンプルからでもデータの再利用を検出することに集中しています。
本稿では, 再生成によるデータ所有を考慮に入れた説明可能な検証手法を提案し, さらに, 反復的データ再生による生成モデルにおけるこれらの指紋の増幅を行う。
論文 参考訳(メタデータ) (2024-02-23T10:48:21Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
連続的テスト時間適応(CTTA)は、ソース事前学習モデルから目標分布の連続的な変化に移行するために提案される。
提案手法は,CTTAタスクの分類とセグメンテーションの両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T15:34:52Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
対向雑音マスキングと呼ばれる新しいトレーニング手法を提案する。
入力データとラベルを同時に調整し、ノイズの多いサンプルが過度に収まらないようにする。
合成および実世界のノイズデータセットの両方でテストされる。
論文 参考訳(メタデータ) (2023-02-14T03:13:26Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。