論文の概要: Towards Human-Centered Construction Robotics: A Reinforcement Learning-Driven Companion Robot for Contextually Assisting Carpentry Workers
- arxiv url: http://arxiv.org/abs/2403.19060v3
- Date: Sat, 14 Sep 2024 13:58:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 02:35:35.532380
- Title: Towards Human-Centered Construction Robotics: A Reinforcement Learning-Driven Companion Robot for Contextually Assisting Carpentry Workers
- Title(参考訳): 人間中心型建設ロボットを目指して--カーペンエント労働者の文脈支援のための強化学習型コンパニオンロボット-
- Authors: Yuning Wu, Jiaying Wei, Jean Oh, Daniel Cardoso Llach,
- Abstract要約: 本稿では,既存の作業における作業者の支援を目的とした「作業支援ローバー」による人間中心型アプローチを提案する。
我々は,ロボットシステムを大工のフォームワークに導入するための詳細な研究を行い,移動性,安全性,快適な作業ロボットのコラボレーションを重視したプロトタイプを紹介した。
- 参考スコア(独自算出の注目度): 11.843554918145983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the dynamic construction industry, traditional robotic integration has primarily focused on automating specific tasks, often overlooking the complexity and variability of human aspects in construction workflows. This paper introduces a human-centered approach with a "work companion rover" designed to assist construction workers within their existing practices, aiming to enhance safety and workflow fluency while respecting construction labor's skilled nature. We conduct an in-depth study on deploying a robotic system in carpentry formwork, showcasing a prototype that emphasizes mobility, safety, and comfortable worker-robot collaboration in dynamic environments through a contextual Reinforcement Learning (RL)-driven modular framework. Our research advances robotic applications in construction, advocating for collaborative models where adaptive robots support rather than replace humans, underscoring the potential for an interactive and collaborative human-robot workforce.
- Abstract(参考訳): 動的建設業界では、従来のロボット統合は主に特定のタスクを自動化することに焦点を当てており、建設ワークフローにおける人間の側面の複雑さと多様性を見越すことが多い。
本稿では,建設作業の熟練した性質を尊重しつつ,安全性とワークフローの流布性を高めることを目的として,既存の作業における作業者を支援する「作業仲間ローバー」による人間中心のアプローチを提案する。
我々は,ロボットシステムを大工のフォームワークに導入するための詳細な研究を行い,コンテキスト強化学習(RL)駆動のモジュラーフレームワークを通じて,動的環境における移動性,安全性,快適な作業ロボットコラボレーションを強調するプロトタイプを紹介した。
我々の研究は建設におけるロボットの応用を前進させ、人間を置き換えるのではなく、適応ロボットが支援するコラボレーティブモデルを提案し、対話的で協調的な人間ロボットの労働力の可能性を強調している。
関連論文リスト
- HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams [0.0]
メタ認知,自然言語コミュニケーション,説明可能性を備えたロボットチームにおいて,ロボットの認知戦略を実証する。
このシステムは、認知と制御機能を柔軟に統合するHARMONICアーキテクチャを使って実現されている。
論文 参考訳(メタデータ) (2024-09-26T16:48:21Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - Cloud-Based Hierarchical Imitation Learning for Scalable Transfer of
Construction Skills from Human Workers to Assisting Robots [0.0]
本稿では,没入型クラウドロボティクスによる仮想実演フレームワークを提案する。
デモプロセスをデジタル化し、重い建設物の反復的な物理的操作を不要にする。
この枠組みは、人間の訓練を受けたロボットに建設作業の物理的歪みを委譲することにより、多様な身体能力を持つ労働者の参加を促進する。
論文 参考訳(メタデータ) (2023-09-20T20:04:42Z) - Natural Language Instructions for Intuitive Human Interaction with
Robotic Assistants in Field Construction Work [4.223718588030052]
本稿では,人間の作業者が自然言語の指示に基づいて建設ロボットと対話できる枠組みを提案する。
提案手法は,自然言語理解(NLU),情報マッピング(IM),ロボット制御(RC)の3段階からなる。
論文 参考訳(メタデータ) (2023-07-09T15:02:34Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
本稿では,実演から学び,ポーズ推定を用いたロボット協調組立システムを提案する。
提案システムでは, ロボット組立シナリオにおいて, 物理的6DoFマニピュレータを用いて実験を行った。
論文 参考訳(メタデータ) (2022-12-02T20:35:55Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
そこで我々は,人間を意識したロボットグリップを生成する,CoGraspと呼ばれる新しいディープニューラルネットワーク方式を提案する。
実際のロボット実験では,安定グリップの生成において約88%の成功率を達成した。
我々のアプローチは、安全で自然で社会的に認識された人間ロボットオブジェクトのコグラスピング体験を可能にします。
論文 参考訳(メタデータ) (2022-10-06T19:23:25Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。