論文の概要: Compressing Large Language Models by Streamlining the Unimportant Layer
- arxiv url: http://arxiv.org/abs/2403.19135v2
- Date: Sun, 31 Mar 2024 08:16:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 13:15:05.952141
- Title: Compressing Large Language Models by Streamlining the Unimportant Layer
- Title(参考訳): 統一層を合理化して大言語モデルを圧縮する
- Authors: Xiaodong Chen, Yuxuan Hu, Jing Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語のタスクやドメインに広く適用されている。
本稿では,レイヤプルーニングと層置換という2つの部分からなるLCM-Streamlineを提案する。
提案手法であるLCM-Streamlineは,従来の最先端(SOTA)モデルプルーニング法より優れていた。
- 参考スコア(独自算出の注目度): 13.03815753589673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLM) have been extensively applied in various natural language tasks and domains, but their applicability is constrained by the large number of parameters of the models. Consequently, there is an increasing emphasis on compact models that exhibit high performance. In this study, we observe that different layers in LLM have varying degrees of perturbation on the hidden states, which allows us to identify less important layers. Based on this phenomenon, we propose LLM-Streamline, which consists of two parts: layer pruning, where we remove a set of consecutive layers with the lowest importance in the model according to the target sparsity; and layer replacement, where we train a lightweight model to substitute the pruned layers, thereby mitigating the performance degradation caused by pruning. In our experiments, we utilize structures such as a multi-layer perceptron (MLP) and a transformer layer as lightweight models and ultimately demonstrate that a single MLP can effectively fit the pruned layers. Comprehensive experiments show that our proposed method, LLM-Streamline, outperforms previous state-of-the-art (SOTA) model pruning methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々な自然言語タスクやドメインに広く適用されてきたが、それらの適用性はモデルの多くのパラメータによって制約されている。
その結果、高性能を示すコンパクトモデルに重点が置かれている。
本研究では,LLMの異なる層が隠れた状態に対して摂動の程度が異なることを観察し,より重要でない層を同定する。
そこで,本研究では, 対象の空間に応じて, モデルに最も重要度の高い連続層群を除去する層プルーニングと, プルーニングによる性能劣化を軽減するために軽量モデルを訓練する層置換という2つの部分からなるLCM-Streamlineを提案する。
実験では,マルチ層パーセプトロン (MLP) やトランスフォーマー層などの構造を軽量モデルとして利用し,最終的に単一のMLPが破砕層に効果的に適合できることを実証した。
総合実験により,提案手法のLLM-Streamlineは,従来のSOTAモデルプルーニング法よりも優れた性能を示した。
関連論文リスト
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - Reassessing Layer Pruning in LLMs: New Insights and Methods [24.394438652261982]
単純なアプローチ、すなわち、最後の25%のレイヤをプルーニングし、その後にtextttlm_headと残りの3つのレイヤを微調整することで、非常に高いパフォーマンスが得られることを示す。
私たちはHfaceで最適なモデルウェイトをリリースし、コードはGitHubで入手できる。
論文 参考訳(メタデータ) (2024-11-23T13:31:16Z) - RL-Pruner: Structured Pruning Using Reinforcement Learning for CNN Compression and Acceleration [0.0]
RL-Prunerを提案する。このRL-Prunerは、強化学習を用いて最適プルーニング分布を学習する。
RL-Prunerは、モデル固有のプルーニング実装を必要とせずに、入力モデル内のフィルタ間の依存関係を自動的に抽出し、プルーニングを実行する。
論文 参考訳(メタデータ) (2024-11-10T13:35:10Z) - AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models [94.82766517752418]
そこで我々は,AlphaPruningを提案する。このAlphaPruningは,より理論的に原理化された方法で,水平方向の空間比を割り振る。
以上よりAlphaPruning prunes LLaMA-7B to 80% sparsity while maintain well perplexity, marking a first in the literature on LLMs。
論文 参考訳(メタデータ) (2024-10-14T03:35:11Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - RankAdaptor: Hierarchical Rank Allocation for Efficient Fine-Tuning Pruned LLMs via Performance Model [4.926801686932735]
そこで我々は,階層的なランクアロケーション手法であるRancedAdaptorを紹介した。
RankAdaptorは、様々なプルーニング設定やLLMアーキテクチャにおいて、最先端のメソッドよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2024-06-22T04:52:58Z) - LayerMerge: Neural Network Depth Compression through Layer Pruning and Merging [20.774060844559838]
既存の深度圧縮法では、冗長な非線形活性化関数を除去し、連続する畳み込み層を単一の層にマージする。
これらの手法は、マージされたレイヤのカーネルサイズが大きくなるという重大な欠点に悩まされる。
畳み込み層とアクティベーション関数を併用することにより,この問題に対処できることを示す。
本稿では,どのアクティベーション層と畳み込み層を除去するかを選択するディープ圧縮手法であるLayerMergeを提案する。
論文 参考訳(メタデータ) (2024-06-18T17:55:15Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You Expect [38.148626520751385]
LLM(Large Language Models)の多くの層は高い類似性を示し、いくつかの層はネットワーク機能において無視できる役割を担っている。
レイヤ除去という,冗長なレイヤを直接削除する,簡単なプルーニング手法を提案する。
実験により,我々はShortGPT(ショートGPT)と呼ぶ手法を,モデルプルーニングにおける従来のSOTA(State-of-the-art)手法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T17:04:18Z) - BESA: Pruning Large Language Models with Blockwise Parameter-Efficient Sparsity Allocation [54.28841287750586]
大規模言語モデル(LLM)は、テキスト要約、テキスト質問応答など、様々なタスクにおいて優れたパフォーマンスを示してきた。
SparseGPTやWandaといった既存のソリューションは、重み付けによってこの問題を緩和しようと試みている。
本稿では,ブロックワイド再構成損失を適用して,ブロックワイドパラメータ効率の空間割当(BESA)と呼ばれる新しいLCMプルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T12:44:15Z) - LaCo: Large Language Model Pruning via Layer Collapse [56.92068213969036]
トランスフォーマーに基づく大規模言語モデル(LLM)は、サイズ拡大の顕著な傾向を目撃している。
モデル量子化、知識蒸留、モデルプルーニングといった既存の手法は、様々な問題によって制約されている。
後部モデル層が前層に崩壊する「textitLayer Collapse (LaCo)」と呼ばれる簡潔な層構造プルーナーを提案する。
論文 参考訳(メタデータ) (2024-02-17T04:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。