論文の概要: RankAdaptor: Hierarchical Rank Allocation for Efficient Fine-Tuning Pruned LLMs via Performance Model
- arxiv url: http://arxiv.org/abs/2406.15734v2
- Date: Mon, 16 Dec 2024 08:19:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:52:49.381237
- Title: RankAdaptor: Hierarchical Rank Allocation for Efficient Fine-Tuning Pruned LLMs via Performance Model
- Title(参考訳): RankAdaptor:性能モデルによる高効率微調整LDMのための階層的ランクアロケーション
- Authors: Changhai Zhou, Shijie Han, Lining Yang, Yuhua Zhou, Xu Cheng, Yibin Wang, Hongguang Li,
- Abstract要約: そこで我々は,階層的なランクアロケーション手法であるRancedAdaptorを紹介した。
RankAdaptorは、様々なプルーニング設定やLLMアーキテクチャにおいて、最先端のメソッドよりも一貫して優れていることを示す。
- 参考スコア(独自算出の注目度): 4.926801686932735
- License:
- Abstract: The efficient compression of large language models (LLMs) has become increasingly popular. However, recovering the performance of compressed LLMs remains a major challenge. The current practice in LLM compression entails the implementation of structural pruning, complemented by a recovery phase that leverages the Low-Rank Adaptation (LoRA) algorithm. Structural pruning's uneven modification of model architecture, coupled with standard LoRA's fixed configuration allocation across layers in an online pipeline, leads to suboptimal performance in various downstream tasks for pruned models. To address this challenge, we introduce RankAdaptor, a hierarchical rank allocation method that enables efficient fine-tuning of pruned LLMs according to layerwise specific recovery requirements. We employ a performance model that conducts offline meta-learning and online incremental learning to explore optimal rank values for each layer. Comprehensive experiments on popular benchmarks show that RankAdaptor consistently outperforms state-of-the-art methods across a variety of pruning settings and LLM architectures, with improvements ranging from 0.7\% to 5.5\%.
- Abstract(参考訳): 大規模言語モデル(LLM)の効率的な圧縮は、ますます人気が高まっている。
しかし, 圧縮LDMの性能回復は依然として大きな課題である。
LLM圧縮における現在の実践は、Low-Rank Adaptation (LoRA)アルゴリズムを利用するリカバリフェーズによって補完される構造的プルーニングの実装を必要とする。
構造的プルーニングによるモデルアーキテクチャの不均一な変更は、オンラインパイプライン内のレイヤ間での標準のLoRAの固定構成割り当てと相まって、プルーニングされたモデルに対する様々な下流タスクにおいて、最適なパフォーマンスをもたらす。
この課題に対処するために,階層的なランクアロケーション手法である RankAdaptor を導入する。
オフラインのメタ学習とオンラインのインクリメンタル学習を行うパフォーマンスモデルを用いて、各レイヤの最適なランク値を探索する。
一般的なベンチマークに関する総合的な実験によると、RancAdaptorは様々なプルーニング設定やLLMアーキテクチャで最先端のメソッドを一貫して上回り、改善は0.7\%から5.5\%である。
関連論文リスト
- Rank Also Matters: Hierarchical Configuration for Mixture of Adapter Experts in LLM Fine-Tuning [5.074620301447097]
本稿では,大規模言語モデル(LLM)のための専門家のアロケーションとランク設定のための階層型スキームHILOを提案する。
HILOは、層間のアダプタエキスパートの数とランクを動的に調整し、アダプタの粒度の異なるモデルレイヤの表現複雑性に適合する。
複数のベンチマークタスクの実験では、HILOが既存のメソッドよりも精度が高く、トレーニング可能なパラメータが少ないことが示されている。
論文 参考訳(メタデータ) (2025-02-06T08:58:03Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models [94.82766517752418]
そこで我々は,AlphaPruningを提案する。このAlphaPruningは,より理論的に原理化された方法で,水平方向の空間比を割り振る。
以上よりAlphaPruning prunes LLaMA-7B to 80% sparsity while maintain well perplexity, marking a first in the literature on LLMs。
論文 参考訳(メタデータ) (2024-10-14T03:35:11Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
グラデーションベースとハイレベルなLLMは、協調最適化フレームワークを効果的に組み合わせることができることを示す。
本稿では,これらを相互に補完し,組み合わせた最適化フレームワークを効果的に連携させることができることを示す。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - Streamlining Redundant Layers to Compress Large Language Models [21.27944103424621]
本稿では,LLM-Streamlineについて紹介する。
異なる層が隠れた状態に様々な影響を与えるという観察に基づいており、重要でない層を識別することができる。
実験により, LLM-Streamlineは, 性能および訓練効率の両面において, 先行および同時のプルーニング法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-28T04:12:13Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。