論文の概要: Going Beyond Word Matching: Syntax Improves In-context Example Selection for Machine Translation
- arxiv url: http://arxiv.org/abs/2403.19285v1
- Date: Thu, 28 Mar 2024 10:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:43:33.383997
- Title: Going Beyond Word Matching: Syntax Improves In-context Example Selection for Machine Translation
- Title(参考訳): 単語マッチングを超える: 構文が機械翻訳における文脈内例選択を改善した
- Authors: Chenming Tang, Zhixiang Wang, Yunfang Wu,
- Abstract要約: In-context Learning (ICL) は、大規模言語モデル(LLM)の時代におけるトレンドの促進戦略である。
機械翻訳(MT)のテキスト内サンプル選択は、表面的な単語レベルの特徴に重点を置いている。
本稿では,依存木間の構文的類似性を計算し,構文に基づくMTの例選択手法を提案する。
- 参考スコア(独自算出の注目度): 13.87098305304058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) is the trending prompting strategy in the era of large language models (LLMs), where a few examples are demonstrated to evoke LLMs' power for a given task. How to select informative examples remains an open issue. Previous works on in-context example selection for machine translation (MT) focus on superficial word-level features while ignoring deep syntax-level knowledge. In this paper, we propose a syntax-based in-context example selection method for MT, by computing the syntactic similarity between dependency trees using Polynomial Distance. In addition, we propose an ensemble strategy combining examples selected by both word-level and syntax-level criteria. Experimental results between English and 6 common languages indicate that syntax can effectively enhancing ICL for MT, obtaining the highest COMET scores on 11 out of 12 translation directions.
- Abstract(参考訳): In-context Learning (ICL) は、大規模言語モデル (LLM) の時代において、あるタスクに対して LLM のパワーを誘発するいくつかの例が示される、流行の促進戦略である。
情報のある例をどうやって選ぶかは、未解決の問題である。
機械翻訳(MT)のテキスト内サンプル選択は、構文レベルの深い知識を無視しつつ、表面的な単語レベルの特徴に重点を置いている。
本稿では,ポリノミアル距離を用いた依存関係木間の構文的類似性を計算し,構文に基づくMTの例選択手法を提案する。
さらに,単語レベルと構文レベルの両方の基準で選択された例を組み合わせたアンサンブル戦略を提案する。
英語と6の共通言語による実験結果から,文法はMTのICLを効果的に向上し,12の翻訳方向のうち11のCOMETスコアが最も高い。
関連論文リスト
- SCOI: Syntax-augmented Coverage-based In-context Example Selection for Machine Translation [13.87098305304058]
そこで本研究では,機械翻訳(MT)における文脈内例の選択に統語的知識を導入する。
我々は、構文拡張されたコベレージベースのIn-context example selection (SCOI) という新しい戦略を提案する。
提案するSCOIは,すべての学習自由手法の中で,平均COMETスコアが最も高い。
論文 参考訳(メタデータ) (2024-08-09T05:25:17Z) - In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation [20.704153242284114]
機械翻訳(MT)は、テキスト内翻訳の例から恩恵を受けることが示されているタスクである。
サンプルの選択方法に関する体系的な研究は発表されておらず、類似性に基づく選択の有用性について混合の結果が報告されている。
文の埋め込み類似性は,特に低リソース言語方向においてMTを改善することができる。
論文 参考訳(メタデータ) (2024-08-01T09:07:32Z) - Efficiently Exploring Large Language Models for Document-Level Machine Translation with In-context Learning [38.89119606657543]
文レベルの翻訳とは対照的に、文脈内学習に基づく大規模言語モデル(LLM)による文書レベルの翻訳(DOCMT)は2つの大きな課題に直面している。
本研究では,文脈認識型プロンプト法(CAP)を提案する。
様々なDOCMTタスクに対して広範な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-11T09:11:17Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - Ungrammatical-syntax-based In-context Example Selection for Grammatical Error Correction [8.655807096424732]
本稿では,文法的誤り訂正のための非文法的シンタクスに基づく文内例選択手法を提案する。
具体的には,多種多様なアルゴリズムを用いた構文構造に基づいて文の類似度を測定し,テスト入力に最もよく似た不規則な構文を共有する最適なICL例を同定する。
論文 参考訳(メタデータ) (2024-03-28T10:05:57Z) - $Se^2$: Sequential Example Selection for In-Context Learning [83.17038582333716]
インコンテキスト学習(ICL)のための大規模言語モデル(LLM)は、実演例によって起動する必要がある。
以前の研究は、主に"select then organize"パラダイムに従って、ICLの例の選択を幅広く検討してきた。
本稿では,この問題を$Se$quential $Se$lection問題として定式化し,シーケンシャル・アウェア法である$Se2$を導入する。
論文 参考訳(メタデータ) (2024-02-21T15:35:04Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP)により、会話アシスタントは自然言語で表現されたユーザーコマンドを解釈できる。
LLMは、自然言語のプロンプトに基づいて、コンピュータプログラムにおいて印象的な性能を達成した。
本稿では,LLMのセマンティック解析機能を活用することに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-17T17:26:50Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z) - Finding Support Examples for In-Context Learning [73.90376920653507]
本稿では,この課題を2段階に解決するためのfilter-thEN-Search法であるLENSを提案する。
まず、データセットをフィルタリングして、個別に情報的インコンテキストの例を得る。
そこで本研究では,反復的に改良し,選択したサンプル順列を評価可能な多様性誘導型サンプル探索を提案する。
論文 参考訳(メタデータ) (2023-02-27T06:32:45Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z) - Dynamic Context Selection for Document-level Neural Machine Translation
via Reinforcement Learning [55.18886832219127]
文書レベルの翻訳における動的コンテキストの選択に有効な手法を提案する。
動的文脈文の選択と活用を促進するために,新しい報酬を提案する。
実験により,提案手法は異なるソース文に対して適応的な文脈文を選択することができることが示された。
論文 参考訳(メタデータ) (2020-10-09T01:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。