Post Quantum Cryptography & its Comparison with Classical Cryptography
- URL: http://arxiv.org/abs/2403.19299v1
- Date: Thu, 28 Mar 2024 10:38:13 GMT
- Title: Post Quantum Cryptography & its Comparison with Classical Cryptography
- Authors: Tanmay Tripathi, Abhinav Awasthi, Shaurya Pratap Singh, Atul Chaturvedi,
- Abstract summary: Quantum cryptography operates on the principles of quantum mechanics, offering a new frontier in secure communication.
By contrasting quantum cryptography with its classical counterpart, it becomes evident how quantum mechanics revolutionizes the landscape of secure communication.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cryptography plays a pivotal role in safeguarding sensitive information and facilitating secure communication. Classical cryptography relies on mathematical computations, whereas quantum cryptography operates on the principles of quantum mechanics, offering a new frontier in secure communication. Quantum cryptographic systems introduce novel dimensions to security, capable of detecting and thwarting eavesdropping attempts. By contrasting quantum cryptography with its classical counterpart, it becomes evident how quantum mechanics revolutionizes the landscape of secure communication.
Related papers
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era [0.0]
Post-quantum cryptography (PQC) is a critical field aimed at developing resilient cryptographic algorithms to quantum attacks.
This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates impervious principles of quantum computing, and introduces various PQC algorithms.
arXiv Detail & Related papers (2024-03-18T12:51:56Z) - Cryptography: Classical versus Post-Quantum [0.0]
We discuss the advantages of post-quantum cryptography over classical cryptography.
We conclude that the development of post-quantum cryptography is essential to guarantee the security of sensitive information in the post quantum era.
arXiv Detail & Related papers (2024-02-16T10:56:45Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Quantum Cryptography: Quantum Key Distribution, a Non-technical Approach [0.0]
Quantum mechanics provides means to create an inherently secure communication channel that is protected by the laws of physics.
This paper is a non-technical overview of quantum key distribution, a type of cryptography poised to exploit the laws of quantum mechanics directly.
arXiv Detail & Related papers (2022-11-09T15:30:23Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Security in Quantum Cryptography [5.914028209673859]
Quantum cryptography exploits principles of quantum physics for the secure processing of information.
We review this physical notion of security, focusing on quantum key distribution and secure communication.
arXiv Detail & Related papers (2021-01-29T19:00:54Z) - A practical quantum encryption protocol with varying encryption
configurations [0.0]
We propose a quantum encryption protocol that utilizes a quantum algorithm to create blocks oftext ciphers based on quantum states.
The main feature of our quantum encryption protocol is that the encryption configuration of each block is determined by the previous blocks.
arXiv Detail & Related papers (2021-01-22T20:09:03Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.