論文の概要: WaterJudge: Quality-Detection Trade-off when Watermarking Large Language Models
- arxiv url: http://arxiv.org/abs/2403.19548v1
- Date: Thu, 28 Mar 2024 16:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:34:50.605675
- Title: WaterJudge: Quality-Detection Trade-off when Watermarking Large Language Models
- Title(参考訳): WaterJudge: 大規模言語モデルのウォーターマークによる品質検出トレードオフ
- Authors: Piotr Molenda, Adian Liusie, Mark J. F. Gales,
- Abstract要約: 本稿では, フレキシブルなNLG評価フレームワークである比較評価を, 特定の透かし設定による品質劣化を評価するための簡易解析フレームワークを提案する。
われわれのフレームワークは、透かし設定の品質-検出トレードオフを簡単に可視化できることを実証する。
このアプローチは2つの異なる要約システムと翻訳システムに適用され、タスクのクロスモデル解析とクロスタスク解析を可能にした。
- 参考スコア(独自算出の注目度): 36.92452515593206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking generative-AI systems, such as LLMs, has gained considerable interest, driven by their enhanced capabilities across a wide range of tasks. Although current approaches have demonstrated that small, context-dependent shifts in the word distributions can be used to apply and detect watermarks, there has been little work in analyzing the impact that these perturbations have on the quality of generated texts. Balancing high detectability with minimal performance degradation is crucial in terms of selecting the appropriate watermarking setting; therefore this paper proposes a simple analysis framework where comparative assessment, a flexible NLG evaluation framework, is used to assess the quality degradation caused by a particular watermark setting. We demonstrate that our framework provides easy visualization of the quality-detection trade-off of watermark settings, enabling a simple solution to find an LLM watermark operating point that provides a well-balanced performance. This approach is applied to two different summarization systems and a translation system, enabling cross-model analysis for a task, and cross-task analysis.
- Abstract(参考訳): LLMのような透かし生成型AIシステムは、幅広いタスクにまたがる機能強化によって大きな関心を集めている。
現在のアプローチでは、単語分布の小さい文脈依存的な変化が透かしの応用と検出に有効であることが示されているが、これらの摂動が生成したテキストの品質に与える影響を分析することはほとんど行われていない。
そこで本稿では, フレキシブルなNLG評価フレームワークである比較評価を用いて, 特定の透かし設定による品質劣化を評価する, 簡易な解析フレームワークを提案する。
筆者らのフレームワークは,透かし設定の品質-検出トレードオフを簡易に可視化し,バランスの取れた性能を提供するLCM透かし動作点を簡易に発見できることを実証する。
このアプローチは2つの異なる要約システムと翻訳システムに適用され、タスクのクロスモデル解析とクロスタスク解析を可能にした。
関連論文リスト
- Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice [35.319577498993354]
大きな言語モデル(LLM)は人間の効率を高めるが、誤用リスクを引き起こす。
本稿では,LLMの透かしのための新しい理論的枠組みを提案する。
我々は,検出性能を最大化するために,透かし方式と検出器の両方を共同で最適化する。
論文 参考訳(メタデータ) (2024-10-03T18:28:10Z) - WaterSeeker: Pioneering Efficient Detection of Watermarked Segments in Large Documents [65.11018806214388]
WaterSeekerは、広範囲な自然テキストの中で、ウォーターマークされたセグメントを効率的に検出し、発見するための新しいアプローチである。
検出精度と計算効率のバランスが良くなる。
WaterSeekerのローカライゼーション機能は、解釈可能なAI検出システムの開発をサポートする。
論文 参考訳(メタデータ) (2024-09-08T14:45:47Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLMは、LLMウォーターマーキングアルゴリズムを実装するためのオープンソースのツールキットである。
評価のために、MarkLLMは3つの視点にまたがる12のツールと、2種類の自動評価パイプラインを提供する。
論文 参考訳(メタデータ) (2024-05-16T12:40:01Z) - Duwak: Dual Watermarks in Large Language Models [49.00264962860555]
トークン確率分布とサンプリングスキームの両方に二重秘密パターンを埋め込むことにより、透かしの効率と品質を向上させるために、Duwakを提案する。
Llama2でDuwakを4つの最先端透かし技術と組み合わせて評価した。
論文 参考訳(メタデータ) (2024-03-12T16:25:38Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
大規模言語モデルは、潜在的な誤報を伴う高品質な応答を生成する。
ウォーターマーキングは、テキストに隠れたマーカーを埋め込むことによって、この文脈において重要な意味を持つ。
ウォーターマーキングのための新しい多目的最適化(MOO)手法を提案する。
本手法は,検出性と意味的整合性を同時に達成する。
論文 参考訳(メタデータ) (2024-02-28T05:43:22Z) - Optimizing watermarks for large language models [0.0]
本稿では,透かし識別能力とテキストの品質への影響のトレードオフに対する体系的なアプローチを提案する。
強靭で効率的な透かしの大規模なクラスでは、関連する最適解が同定され、現在デフォルトの透かしよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-28T16:10:51Z) - New Evaluation Metrics Capture Quality Degradation due to LLM
Watermarking [28.53032132891346]
大規模言語モデル(LLM)のための透かしアルゴリズム評価のための2つの新しい使いやすさ手法を提案する。
種々のデータセットを用いて実験を行った結果,従来の透かし法は単純な分類器でも検出可能であることがわかった。
以上の結果から,透かしの堅牢性とテキスト品質のトレードオフを浮き彫りにし,透かしの質を評価する上で,より情報的な指標を持つことの重要性を強調した。
論文 参考訳(メタデータ) (2023-12-04T22:56:31Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
本研究では, モデル生成出力の品質に及ぼす透かしの影響について検討した。
出力確率分布に影響を与えることなく、透かしを統合することができる。
ウォーターマークの存在は、下流タスクにおけるモデルの性能を損なうものではない。
論文 参考訳(メタデータ) (2023-09-22T12:46:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。