論文の概要: WaterSeeker: Pioneering Efficient Detection of Watermarked Segments in Large Documents
- arxiv url: http://arxiv.org/abs/2409.05112v3
- Date: Tue, 15 Oct 2024 07:13:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 22:49:49.413679
- Title: WaterSeeker: Pioneering Efficient Detection of Watermarked Segments in Large Documents
- Title(参考訳): WaterSeeker: 大規模文書におけるウォーターマーク付きセグメントの効率的な検出
- Authors: Leyi Pan, Aiwei Liu, Yijian Lu, Zitian Gao, Yichen Di, Lijie Wen, Irwin King, Philip S. Yu,
- Abstract要約: WaterSeekerは、広範囲な自然テキストの中で、ウォーターマークされたセグメントを効率的に検出し、発見するための新しいアプローチである。
検出精度と計算効率のバランスが良くなる。
WaterSeekerのローカライゼーション機能は、解釈可能なAI検出システムの開発をサポートする。
- 参考スコア(独自算出の注目度): 65.11018806214388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking algorithms for large language models (LLMs) have attained high accuracy in detecting LLM-generated text. However, existing methods primarily focus on distinguishing fully watermarked text from non-watermarked text, overlooking real-world scenarios where LLMs generate only small sections within large documents. In this scenario, balancing time complexity and detection performance poses significant challenges. This paper presents WaterSeeker, a novel approach to efficiently detect and locate watermarked segments amid extensive natural text. It first applies an efficient anomaly extraction method to preliminarily locate suspicious watermarked regions. Following this, it conducts a local traversal and performs full-text detection for more precise verification. Theoretical analysis and experimental results demonstrate that WaterSeeker achieves a superior balance between detection accuracy and computational efficiency. Moreover, WaterSeeker's localization ability supports the development of interpretable AI detection systems. This work pioneers a new direction in watermarked segment detection, facilitating more reliable AI-generated content identification.Our code is available at https://github.com/THU-BPM/WaterSeeker.
- Abstract(参考訳): 大規模言語モデル(LLM)のための透かしアルゴリズムは,LLM生成テキストの検出において高い精度を実現している。
しかし、既存の手法では、LLMが大きな文書の小さな部分しか生成しない現実のシナリオを見越して、完全にウォーターマークされたテキストと非ウォーターマークされたテキストを区別することに重点を置いている。
このシナリオでは、時間の複雑さと検出パフォーマンスのバランスが大きな課題となる。
本稿では,自然文中の透かしを効率的に検出し,発見するための新しい手法であるWaterSeekerを提案する。
まず,疑わしい透かし領域を予め特定するために,効率的な異常抽出法を適用した。
その後、局所的なトラバーサルを行い、より正確な検証のためにフルテキスト検出を行う。
理論的解析と実験結果から,WaterSeekerは検出精度と計算効率のバランスが優れていることが示された。
さらに、WaterSeekerのローカライズ機能は、解釈可能なAI検出システムの開発をサポートする。
当社のコードはhttps://github.com/THU-BPM/WaterSeekerで公開されている。
関連論文リスト
- Efficiently Identifying Watermarked Segments in Mixed-Source Texts [35.437251393372954]
部分透かし検出のための2つの新しい手法を提案する。
まず,長文に透かしセグメントが存在するかどうかを判定するための幾何被覆検出フレームワークを開発する。
第2に,テキスト内の透かしセグメントの正確な位置を特定できる適応型オンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T16:58:41Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
大規模言語モデルは、潜在的な誤報を伴う高品質な応答を生成する。
ウォーターマーキングは、テキストに隠れたマーカーを埋め込むことによって、この文脈において重要な意味を持つ。
ウォーターマーキングのための新しい多目的最適化(MOO)手法を提案する。
本手法は,検出性と意味的整合性を同時に達成する。
論文 参考訳(メタデータ) (2024-02-28T05:43:22Z) - I Know You Did Not Write That! A Sampling Based Watermarking Method for
Identifying Machine Generated Text [0.0]
機械生成テキストを検出するための新しい透かし手法を提案する。
我々の方法は生成されたテキストにユニークなパターンを埋め込む。
本稿では,透かしがテキスト品質にどのように影響するかを示し,提案手法を最先端の透かし法と比較する。
論文 参考訳(メタデータ) (2023-11-29T20:04:57Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
論文 参考訳(メタデータ) (2023-06-07T17:58:48Z) - Who Wrote this Code? Watermarking for Code Generation [53.24895162874416]
本稿では,機械生成テキストを検出するために,Entropy Thresholding (SWEET) を用いたSelective WatErmarkingを提案する。
実験の結果,SWEETはコード品質を著しく向上し,すべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-24T11:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。