WaterJudge: Quality-Detection Trade-off when Watermarking Large Language Models
- URL: http://arxiv.org/abs/2403.19548v1
- Date: Thu, 28 Mar 2024 16:28:38 GMT
- Title: WaterJudge: Quality-Detection Trade-off when Watermarking Large Language Models
- Authors: Piotr Molenda, Adian Liusie, Mark J. F. Gales,
- Abstract summary: This paper proposes a simple analysis framework where comparative assessment, a flexible NLG evaluation framework, is used to assess the quality degradation caused by a particular watermark setting.
We demonstrate that our framework provides easy visualization of the quality-detection trade-off of watermark settings.
This approach is applied to two different summarization systems and a translation system, enabling cross-model analysis for a task, and cross-task analysis.
- Score: 36.92452515593206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking generative-AI systems, such as LLMs, has gained considerable interest, driven by their enhanced capabilities across a wide range of tasks. Although current approaches have demonstrated that small, context-dependent shifts in the word distributions can be used to apply and detect watermarks, there has been little work in analyzing the impact that these perturbations have on the quality of generated texts. Balancing high detectability with minimal performance degradation is crucial in terms of selecting the appropriate watermarking setting; therefore this paper proposes a simple analysis framework where comparative assessment, a flexible NLG evaluation framework, is used to assess the quality degradation caused by a particular watermark setting. We demonstrate that our framework provides easy visualization of the quality-detection trade-off of watermark settings, enabling a simple solution to find an LLM watermark operating point that provides a well-balanced performance. This approach is applied to two different summarization systems and a translation system, enabling cross-model analysis for a task, and cross-task analysis.
Related papers
- GaussMark: A Practical Approach for Structural Watermarking of Language Models [61.84270985214254]
GaussMark is a simple, efficient, and relatively robust scheme for watermarking large language models.
We show that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations.
arXiv Detail & Related papers (2025-01-17T22:30:08Z) - Theoretically Grounded Framework for LLM Watermarking: A Distribution-Adaptive Approach [35.319577498993354]
We present a novel theoretical framework for watermarking Large Language Models (LLMs)
Our approach focuses on maximizing detection performance while maintaining control over the worst-case Type-I error and text distortion.
We propose an efficient, model-agnostic, distribution-adaptive watermarking algorithm, utilizing a surrogate model alongside the Gumbel-max trick.
arXiv Detail & Related papers (2024-10-03T18:28:10Z) - WaterSeeker: Pioneering Efficient Detection of Watermarked Segments in Large Documents [63.563031923075066]
WaterSeeker is a novel approach to efficiently detect and locate watermarked segments amid extensive natural text.
It achieves a superior balance between detection accuracy and computational efficiency.
arXiv Detail & Related papers (2024-09-08T14:45:47Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Duwak: Dual Watermarks in Large Language Models [49.00264962860555]
We propose, Duwak, to enhance the efficiency and quality of watermarking by embedding dual secret patterns in both token probability distribution and sampling schemes.
We evaluate Duwak extensively on Llama2, against four state-of-the-art watermarking techniques and combinations of them.
arXiv Detail & Related papers (2024-03-12T16:25:38Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
Large language models generate high-quality responses with potential misinformation.
Watermarking is pivotal in this context, which involves embedding hidden markers in texts.
We introduce a novel multi-objective optimization (MOO) approach for watermarking.
Our method simultaneously achieves detectability and semantic integrity.
arXiv Detail & Related papers (2024-02-28T05:43:22Z) - Optimizing watermarks for large language models [0.0]
This paper introduces a systematic approach to the trade-off between watermark identifiability and their impact on the quality of the generated text.
For a large class of robust, efficient watermarks, the associated optimal solutions are identified and shown to outperform the currently default watermark.
arXiv Detail & Related papers (2023-12-28T16:10:51Z) - New Evaluation Metrics Capture Quality Degradation due to LLM
Watermarking [28.53032132891346]
We introduce two new easy-to-use methods for evaluating watermarking algorithms for large-language models (LLMs)
Our experiments, conducted across various datasets, reveal that current watermarking methods are detectable by even simple classifiers.
Our findings underscore the trade-off between watermark robustness and text quality and highlight the importance of having more informative metrics to assess watermarking quality.
arXiv Detail & Related papers (2023-12-04T22:56:31Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
arXiv Detail & Related papers (2023-11-16T11:58:31Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.