Entanglement-based quantum information protocols designed with silicon quantum dot platform
- URL: http://arxiv.org/abs/2403.19551v1
- Date: Thu, 28 Mar 2024 16:35:39 GMT
- Title: Entanglement-based quantum information protocols designed with silicon quantum dot platform
- Authors: Junghee Ryu, Hoon Ryu,
- Abstract summary: Spin-based quantum bit (qubit) operations are intensively studied to realize universal logic gates with a high fidelity.
In this paper, we explore entanglement-based quantum information protocols in electrically defined five silicon quantum dot system.
We discuss the implementations of three applications: the generation of magic states, entanglement swapping, and quantum teleportation.
- Score: 0.3222802562733786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electron spins in silicon quantum dot platform provide great potential for quantum information processing due to excellent physical properties and modern fabrication technologies. Spin-based quantum bit (qubit) operations are intensively studied to realize universal logic gates with a high fidelity, fast gating operations, and basic programmability. Although recent experimental achievements can be considered as remarkable results for utilizing quantum computation, more advanced quantum information protocols should be demonstrated with a large number of qubit system to enable programmability of silicon devices. Here, we computationally explore entanglement-based quantum information protocols in electrically defined five silicon quantum dot system. To this end, device simulations are employed to demonstrate $1$-qubit gate and $2$-qubit gate operations. Additionally, we discuss the implementations of three applications: the generation of magic states, entanglement swapping, and quantum teleportation in our silicon device. All the results will secure the scalability of quantum information processing with electron spin qubits in silicon quantum dot system.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.
We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.
We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - Quantum Computing for Solid Mechanics and Structural Engineering -- a
Demonstration with Variational Quantum Eigensolver [3.8061090528695534]
Variational quantum algorithms exploit the features of superposition and entanglement to optimize a cost function efficiently.
We implement and demonstrate the numerical processes on the 5-qubit and 7-qubit quantum processors on the IBM Qiskit platform.
arXiv Detail & Related papers (2023-08-28T17:52:47Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum information processing with superconducting circuits: a
perspective [0.0]
Key issues involve how to achieve quantum advantage in useful applications for quantum optimization and materials science.
Recent work on applications of variational quantum algorithms for optimization and electronic structure determination.
Current work and ideas about how to scale up to competitive quantum systems.
arXiv Detail & Related papers (2023-02-09T10:49:56Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.