Magic-induced computational separation in entanglement theory
- URL: http://arxiv.org/abs/2403.19610v3
- Date: Fri, 19 Apr 2024 15:05:57 GMT
- Title: Magic-induced computational separation in entanglement theory
- Authors: Andi Gu, Salvatore F. E. Oliviero, Lorenzo Leone,
- Abstract summary: Entanglement serves as a foundational pillar in quantum information theory.
We investigate the role of magic in entanglement theory by studying entanglement estimation, distillation and dilution.
We find an operational separation that divides Hilbert space into two distinct regimes: the entanglement-dominated (ED) phase and magic-dominated (MD) phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement serves as a foundational pillar in quantum information theory, delineating the boundary between what is classical and what is quantum. The common assumption is that higher entanglement corresponds to a greater degree of `quantumness'. However, this folk belief is challenged by the fact that classically simulable operations, such as Clifford circuits, can create highly entangled states. The simulability of these states raises a question: what are the differences between `low-magic' entanglement, and `high-magic' entanglement? We answer this question in this work with a rigorous investigation into the role of magic in entanglement theory. We take an operational approach to understanding this relationship by studying tasks such as entanglement estimation, distillation and dilution. This approach reveals that magic has notable implications for entanglement. Specifically, we find an operational separation that divides Hilbert space into two distinct regimes: the entanglement-dominated (ED) phase and magic-dominated (MD) phase. Roughly speaking, ED states have entanglement that significantly surpasses their magic, while MD states have magic that dominates their entanglement. The competition between the two resources in these two phases induces a computational phase separation between them: there are {sample- and time-efficient} quantum algorithms for almost any entanglement task on ED states, while these tasks are {provably computationally intractable} in the MD phase. Our results find applications in diverse areas such as quantum error correction, many-body physics, and the study of quantum chaos, providing a unifying framework for understanding the behavior of quantum systems. We also offer theoretical explanations for previous numerical observations, highlighting the broad implications of the ED-MD distinction across various subfields of physics.
Related papers
- Bipartite Bound Entanglement [0.016385815610837167]
Bound entanglement is a special form of quantum entanglement that cannot be used for distillation.
We focus on systems of finite dimensions, an area of high relevance for many quantum information processing tasks.
The article illuminates areas where our understanding of bound entangled states, particularly their detection and characterization, is yet to be fully developed.
arXiv Detail & Related papers (2024-06-19T12:23:34Z) - The magic of entangled top quarks [0.0]
We consider the property of magic, which distinguishes those quantum states which have a genuine computational advantage over classical states.
We examine top anti-top pair production at the LHC, showing that nature chooses to produce magic tops.
We compare results for individual partonic channels and at proton-level, showing that averaging over final states typically increases magic.
arXiv Detail & Related papers (2024-06-11T14:50:56Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Limitations of Classically-Simulable Measurements for Quantum State Discrimination [7.0937306686264625]
stabilizer operations play a pivotal role in fault-tolerant quantum computing.
We investigate the limitations of classically-simulable measurements in distinguishing quantum states.
arXiv Detail & Related papers (2023-10-17T15:01:54Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Resource theory of imaginarity: Quantification and state conversion [48.7576911714538]
Resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory.
We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory.
Our study reveals the significance of complex numbers in quantum physics, and proves that imaginarity is a resource in optical experiments.
arXiv Detail & Related papers (2021-03-02T15:30:27Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Interference as an information-theoretic game [0.0]
We show that the order of interference is in one-to-one correspondence with the parity order of certain parity games.
These results shed light on the operational meaning of the order of interference and can be important for the identification of the information-theoretic principles behind second-order interference in quantum theory.
arXiv Detail & Related papers (2020-03-26T19:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.