論文の概要: Siamese Vision Transformers are Scalable Audio-visual Learners
- arxiv url: http://arxiv.org/abs/2403.19638v1
- Date: Thu, 28 Mar 2024 17:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:04:56.106356
- Title: Siamese Vision Transformers are Scalable Audio-visual Learners
- Title(参考訳): Siamese Vision Transformersはスケーラブルなオーディオ視覚学習者
- Authors: Yan-Bo Lin, Gedas Bertasius,
- Abstract要約: 本稿では,AVSiam(Audio-visual siamese Network)を用いて,高能率かつスケーラブルな視覚前訓練を行う。
我々のフレームワークは、単一の共有視覚変換器のバックボーンを使用して、音声および視覚入力を処理する。
音声,視覚,視覚の入力を単一の共有VTバックボーンで頑健に処理できる。
- 参考スコア(独自算出の注目度): 19.916919837694802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional audio-visual methods rely on independent audio and visual backbones, which is costly and not scalable. In this work, we investigate using an audio-visual siamese network (AVSiam) for efficient and scalable audio-visual pretraining. Our framework uses a single shared vision transformer backbone to process audio and visual inputs, improving its parameter efficiency, reducing the GPU memory footprint, and allowing us to scale our method to larger datasets and model sizes. We pretrain our model using a contrastive audio-visual matching objective with a multi-ratio random masking scheme, which enables our model to process larger audio-visual instance batches, helpful for contrastive learning. Unlike prior audio-visual methods, our method can robustly handle audio, visual, and audio-visual inputs with a single shared ViT backbone. Furthermore, despite using the shared backbone for both modalities, AVSiam achieves competitive or even better results than prior methods on AudioSet and VGGSound for audio-visual classification and retrieval. Our code is available at https://github.com/GenjiB/AVSiam
- Abstract(参考訳): 従来のオーディオ-視覚的手法は、費用がかかりスケーラブルではない独立したオーディオと視覚のバックボーンに依存している。
本研究では,AVSiam(Audio-visual siamese Network)を用いて,効率よくスケーラブルな視覚前訓練を行う。
我々のフレームワークは、単一の共有視覚変換器のバックボーンを使用してオーディオと視覚入力を処理し、パラメータ効率を改善し、GPUメモリのフットプリントを削減し、我々のメソッドをより大きなデータセットやモデルサイズにスケールできるようにする。
我々は,マルチ比のランダムマスキング方式を用いて,コントラッシブな音声視覚マッチング目標を用いて事前学習を行い,より大規模な音声視覚インスタンスバッチを処理し,コントラッシブな学習に役立てる。
従来の音声・視覚的手法とは異なり、この手法は単一の共有VTバックボーンで音声・視覚・音声・視覚的入力を頑健に処理できる。
さらに、AVSiamは、両モードで共有バックボーンを使用するが、オーディオ-視覚的分類と検索のための従来のAudioSetやVGGSoundの手法よりも、競合的、さらに優れた結果が得られる。
私たちのコードはhttps://github.com/ GenjiB/AVSiamで利用可能です。
関連論文リスト
- From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
本稿では,視覚表現学習と視覚音声生成のギャップを埋める新しいフレームワークであるVision to Audio and Beyond(VAB)を紹介する。
VABは、事前訓練されたオーディオトークンライザと画像エンコーダを使用して、それぞれ音声トークンと視覚的特徴を取得する。
実験では,ビデオから高品質な音声を生成するためのVABの効率と,セマンティック・オーディオ・視覚的特徴を習得する能力について紹介した。
論文 参考訳(メタデータ) (2024-09-27T20:26:34Z) - Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
ビデオとオーディオのコンテンツ制作は、映画産業とプロのユーザーにとって重要な技術である。
既存の拡散に基づく手法は、ビデオと音声を別々に生成する。
本研究では,このギャップを埋めることを目的として,クロス・ビジュアル・オーディオとジョイント・ヴィジュアル・オーディオ生成のためのフレームワークを慎重に設計した。
論文 参考訳(メタデータ) (2024-02-27T17:57:04Z) - Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
双方向ブリッジを用いた双方向オーディオ・ビジュアルデコーダ(BAVD)を提案する。
この相互作用はモダリティの不均衡を狭め、統合されたオーディオ視覚表現のより効果的な学習を促進する。
また,BAVDの微粒化誘導として,音声・視覚的フレームワイド同期のための戦略を提案する。
論文 参考訳(メタデータ) (2024-02-04T03:02:35Z) - AudioFormer: Audio Transformer learns audio feature representations from
discrete acoustic codes [6.375996974877916]
離散音響符号の取得により音声特徴表現を学習するAudioFormerという手法を提案する。
以上の結果から,AudioFormerはモノモーダル音声分類モデルに比べて性能が大幅に向上したことが示された。
論文 参考訳(メタデータ) (2023-08-14T15:47:25Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
視覚誘導音源分離は、視覚特徴抽出、マルチモーダル特徴融合、音響信号処理の3つの部分からなる。
本稿では,この課題をパラメータ調和とより効果的な方法で解決するために,AVPC(Audio-visual predictive coding)を提案する。
さらに、同一音源の2つの音声視覚表現を共予測することにより、AVPCのための効果的な自己教師型学習戦略を開発する。
論文 参考訳(メタデータ) (2023-06-19T03:10:57Z) - Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment [22.912401512161132]
我々は、各モデルコンポーネントの学習手順をスケジューリングして、オーディオ・視覚的モダリティを関連付けるモデルの設計を行う。
入力音声を視覚的特徴に変換し,事前学習した生成器を用いて画像を生成する。
VEGAS と VGGSound のデータセットは,従来の手法よりもかなりよい結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T16:01:50Z) - Vision Transformers are Parameter-Efficient Audio-Visual Learners [95.59258503297195]
本稿では、事前学習したVTをオーディオ視覚タスクに適応させる潜在型オーディオ視覚ハイブリッド(LAVISH)アダプタを提案する。
提案手法は,様々な視覚的タスクにおいて,競争力や性能の向上を実現する。
論文 参考訳(メタデータ) (2022-12-15T17:31:54Z) - Contrastive Audio-Visual Masked Autoencoder [85.53776628515561]
CAV-MAE(Contrastive Audio-Visual Masked Auto-Encoder)
我々の完全自己指導型CAV-MAEは、VGGSoundで65.9%の新しいSOTA精度を実現する。
論文 参考訳(メタデータ) (2022-10-02T07:29:57Z) - Estimating Visual Information From Audio Through Manifold Learning [14.113590443352495]
音声信号のみを用いてシーンの視覚情報を抽出する新しい枠組みを提案する。
私たちのフレームワークはマニフォールド学習に基づいており、2つのステップから構成されています。
提案手法は,公開されている音声/視覚データセットを用いて,音声から有意義な画像を生成することができることを示す。
論文 参考訳(メタデータ) (2022-08-03T20:47:11Z) - VGGSound: A Large-scale Audio-Visual Dataset [160.1604237188594]
オープンソースのメディアからオーディオデータセットを作成するために,スケーラブルなパイプラインを提案する。
このパイプラインを使用して、VGGSoundデータセットを310のオーディオクラス用に210万本以上のビデオでキュレートする。
得られたデータセットは、音声認識モデルのトレーニングと評価に使用することができる。
論文 参考訳(メタデータ) (2020-04-29T17:46:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。