Analysis of classical and quantum mechanical concepts of probability: A synopsis
- URL: http://arxiv.org/abs/2403.19658v1
- Date: Tue, 9 Jan 2024 10:04:51 GMT
- Title: Analysis of classical and quantum mechanical concepts of probability: A synopsis
- Authors: Christian Hugo Hoffmann,
- Abstract summary: An adequate interpretation of probability should be given due attention, particularly with regard to quantum theory.
This paper addresses the central question of what a coherent concept of probability might look like that would do justice to both classical probability theory and quantum theory.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper addresses the central question of what a coherent concept of probability might look like that would do justice to both classical probability theory, axiomatized by Kolmogorov, and quantum theory. At a time when quanta are receiving increased and expanded attention -- think, for example, of the advances in quantum computers or the promises associated with this new technology (National Academies of Sciences: Engineering, and Medicine, 2019) -- an adequate interpretation of probability, which is no less important, should be given due attention, particularly with regard to quantum theory.
Related papers
- Stochastic Processes: From Classical to Quantum [7.034466417392574]
We start with some reminders from the theory of classical processes.
We then provide a brief overview of quantum mechanics and quantum field theory.
We introduce quantum processes on a boson Fock space and their calculus.
arXiv Detail & Related papers (2024-07-04T15:26:35Z) - On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Advantages of quantum mechanics in the estimation theory [0.0]
In quantum theory, the situation with operators is different due to its non-commutativity nature.
We formulate, with complete generality, the quantum estimation theory for Gaussian states in terms of their first and second moments.
arXiv Detail & Related papers (2022-11-13T18:03:27Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - On the relation between quantum theory and probability [0.0]
The theory of probability and the quantum theory, the one mathematical and the other physical, are related in that each admits a number of very different interpretations.
It has been proposed that the conceptual problems of the quantum theory could be, if not resolved, at least mitigated by a proper interpretation of probability.
arXiv Detail & Related papers (2021-08-19T15:24:19Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.