The State of Lithium-Ion Battery Health Prognostics in the CPS Era
- URL: http://arxiv.org/abs/2403.19816v1
- Date: Thu, 28 Mar 2024 20:01:35 GMT
- Title: The State of Lithium-Ion Battery Health Prognostics in the CPS Era
- Authors: Gaurav Shinde, Rohan Mohapatra, Pooja Krishan, Harish Garg, Srikanth Prabhu, Sanchari Das, Mohammad Masum, Saptarshi Sengupta,
- Abstract summary: This paper explores the seamless integration of Prognostics and Health Management within batteries.
Remaining useful life (RUL), a critical concept in prognostics, is examined in depth, emphasizing its role in predicting component failure.
It highlights the paradigm shift toward deep learning architectures within the field of Li-ion battery health prognostics.
- Score: 13.663561721352792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lithium-ion batteries (Li-ion) have revolutionized energy storage technology, becoming integral to our daily lives by powering a diverse range of devices and applications. Their high energy density, fast power response, recyclability, and mobility advantages have made them the preferred choice for numerous sectors. This paper explores the seamless integration of Prognostics and Health Management within batteries, presenting a multidisciplinary approach that enhances the reliability, safety, and performance of these powerhouses. Remaining useful life (RUL), a critical concept in prognostics, is examined in depth, emphasizing its role in predicting component failure before it occurs. The paper reviews various RUL prediction methods, from traditional models to cutting-edge data-driven techniques. Furthermore, it highlights the paradigm shift toward deep learning architectures within the field of Li-ion battery health prognostics, elucidating the pivotal role of deep learning in addressing battery system complexities. Practical applications of PHM across industries are also explored, offering readers insights into real-world implementations.This paper serves as a comprehensive guide, catering to both researchers and practitioners in the field of Li-ion battery PHM.
Related papers
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters.
The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance.
arXiv Detail & Related papers (2024-08-14T15:44:56Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage.
The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation.
This paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a-temporal attention network (ST-MAN)
arXiv Detail & Related papers (2023-10-29T07:32:32Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) and Remaining Useful Life (RUL) contribute to enhancing predictive maintenance, reliability, and longevity of battery systems.
This paper presents a mapping study of the state-of-the-art in machine learning methods for estimating the SoH and RUL of lead-acid batteries.
arXiv Detail & Related papers (2023-07-11T10:41:41Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
We present a review of the existing approaches for estimating the remaining useful life of lithium-ion batteries.
We propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries.
arXiv Detail & Related papers (2023-05-17T15:35:31Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
Agent-based simulations are used to better understand the dynamics of the electricity market.
Agent-based models provide the opportunity to integrate machine learning and artificial intelligence.
We review 55 papers published between 2016 and 2021 which focus on machine learning applied to agent-based electricity market models.
arXiv Detail & Related papers (2022-06-05T14:52:26Z) - Regularization-based Continual Learning for Fault Prediction in
Lithium-Ion Batteries [0.0]
An early prediction and robust understanding of battery faults could greatly increase product quality.
Current approaches for data-driven fault prediction provide good results on the exact processes they were trained on.
Continual learning promises such flexibility, allowing for an automatic adaption of previously learnt knowledge to new tasks.
arXiv Detail & Related papers (2021-07-07T16:24:18Z) - Towards Continual Reinforcement Learning: A Review and Perspectives [69.48324517535549]
We aim to provide a literature review of different formulations and approaches to continual reinforcement learning (RL)
While still in its early days, the study of continual RL has the promise to develop better incremental reinforcement learners.
These include applications such as those in the fields of healthcare, education, logistics, and robotics.
arXiv Detail & Related papers (2020-12-25T02:35:27Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.