論文の概要: OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM
- arxiv url: http://arxiv.org/abs/2503.10009v3
- Date: Fri, 01 Aug 2025 04:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.478962
- Title: OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM
- Title(参考訳): OR-LLM-Agent:LLMの推論による運用研究最適化問題のモデル化と解決
- Authors: Bowen Zhang, Pengcheng Luo, Genke Yang, Boon-Hee Soong, Chau Yuen,
- Abstract要約: 自動オペレーションリサーチ問題解決のためのLLMを推論するAIエージェントフレームワークであるOR-LLM-Agentを提案する。
GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, ORLMなどの高度な手法よりも, OR-LLM-Agentの精度を7%以上向上させることを示す。
- 参考スコア(独自算出の注目度): 15.260794368585692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of artificial intelligence (AI), applying large language models (LLMs) to mathematical problem-solving has attracted increasing attention. Most existing approaches attempt to improve Operations Research (OR) optimization problem-solving through prompt engineering or fine-tuning strategies for LLMs. However, these methods are fundamentally constrained by the limited capabilities of non-reasoning LLMs. To overcome these limitations, we propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated OR problem solving. The framework decomposes the task into three sequential stages: mathematical modeling, code generation, and debugging. Each task is handled by a dedicated sub-agent, which enables more targeted reasoning. We also construct BWOR, an OR dataset for evaluating LLM performance on OR tasks. Our analysis shows that in the benchmarks NL4OPT, MAMO, and IndustryOR, reasoning LLMs sometimes underperform their non-reasoning counterparts within the same model family. In contrast, BWOR provides a more consistent and discriminative assessment of model capabilities. Experimental results demonstrate that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7\% in accuracy. These results demonstrate the effectiveness of task decomposition for OR problem solving.
- Abstract(参考訳): 人工知能(AI)の台頭に伴い、数学的な問題解決に大規模言語モデル(LLM)を適用することが注目されている。
既存のほとんどのアプローチは、LLMの迅速なエンジニアリングや微調整戦略を通じて、オペレーショナルリサーチ(OR)最適化の問題解決を改善しようとしている。
しかし,これらの手法は,非共振性LLMの限界能力によって根本的に制約されている。
これらの制限を克服するために、自動OR問題解決のためにLLMを推論するAIエージェントフレームワークOR-LLM-Agentを提案する。
このフレームワークは、タスクを数学的モデリング、コード生成、デバッグの3段階に分割する。
各タスクは専用のサブエージェントによって処理され、よりターゲットを絞った推論が可能になる。
また,ORタスク上でのLLM性能を評価するORデータセットであるBWORを構築した。
分析の結果,NL4OPT,MAMO,IndustrialORのベンチマークでは,LLMが同じモデルファミリー内において,非推論的な性能を低下させる場合があった。
対照的に、BWORはより一貫性があり差別的なモデル能力の評価を提供する。
GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, ORLMなどの高度な手法で, OR-LLM-AgentでDeepSeek-R1の精度を少なくとも7%向上させる実験結果が得られた。
これらの結果から,OR問題の解法におけるタスク分解の有効性が示された。
関連論文リスト
- Performance of LLMs on Stochastic Modeling Operations Research Problems: From Theory to Practice [18.040849771712093]
大規模言語モデル(LLM)は、さまざまな領域にまたがる専門家レベルの能力を示している。
しかし、オペレーティング・リサーチ(OR)における問題の解決能力はいまだ未解明のままである。
論文 参考訳(メタデータ) (2025-06-30T14:54:15Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
LLMマルチエージェントシステムにおける障害帰属は、まだ調査が過小評価されており、労働集約的である。
本稿では,3つの自動故障帰属手法の開発と評価を行い,その欠点と欠点を要約する。
最良の方法は、障害に応答するエージェントを特定する際に53.5%の精度を達成するが、故障の特定には14.2%しか役に立たない。
論文 参考訳(メタデータ) (2025-04-30T23:09:44Z) - FEABench: Evaluating Language Models on Multiphysics Reasoning Ability [8.441945838936444]
FEABenchは、有限要素解析(FEA)を用いて物理学、数学、工学の問題をシミュレートし、解決する大規模言語モデル(LLM)とLLMエージェントの能力を評価するためのベンチマークである。
本研究では,自然言語問題の記述を推論し,FEAソフトウェアであるCOMSOL Multiphysics$circledR$を動作させることにより,LLMがこの問題をエンドツーエンドで解決できるかどうかを総合的に評価する手法を提案する。
論文 参考訳(メタデータ) (2025-04-08T17:59:39Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - MathAgent: Leveraging a Mixture-of-Math-Agent Framework for Real-World Multimodal Mathematical Error Detection [53.325457460187046]
これらの課題に対処するために設計された新しいMixture-of-Math-AgentフレームワークであるMathAgentを紹介する。
MathAgentはエラー検出を3つのフェーズに分解し、それぞれが特別なエージェントによって処理される。
実世界の教育データに基づいてMathAgentを評価し,誤差ステップ同定の精度を約5%向上した。
論文 参考訳(メタデータ) (2025-03-23T16:25:08Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
Reinforced Meta-thinking Agents (ReMA) を導入し,Large Language Models (LLMs) の推論からメタ思考行動を求める。
ReMAは、推論プロセスを2つの階層的なエージェントに分解する。戦略上の監視と計画を生成するハイレベルなメタ思考エージェントと、詳細な実行のための低レベルな推論エージェントである。
単ターン実験による実験結果から、ReMAは複雑な推論タスクにおいて単エージェントRLベースラインよりも優れることが示された。
論文 参考訳(メタデータ) (2025-03-12T16:05:31Z) - ARIES: Autonomous Reasoning with LLMs on Interactive Thought Graph Environments [7.508204100423766]
LLMを用いた推論のためのマルチエージェントアーキテクチャであるARIESを紹介する。
教師付き微調整(SFT)のない政策エージェントとして市販のLCMを使用することで,HumanEvalの精度が最大29%向上することが観察された。
また、観測された障害モードの徹底的な解析を行い、LLMサイズと問題分解の深さの制限が、LLM誘導推論をスケールする上での課題であることを示した。
論文 参考訳(メタデータ) (2025-02-28T16:28:13Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Multi-Agent Actor-Critic Generative AI for Query Resolution and Analysis [1.0124625066746598]
本稿では,アクタ批判モデルに基づく問合せ解決のための変換フレームワークであるMASQRADを紹介する。
MASQRADは不正確または曖昧なユーザからの問い合わせを正確で行動可能な要求に翻訳するのに優れている。
MASQRAD は高度なマルチエージェントシステムとして機能するが、単一のAIエンティティとしてユーザに対して "masquerad" を提供する。
論文 参考訳(メタデータ) (2025-02-17T04:03:15Z) - Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
商用問題解決者のための自然言語記述から最適化モデルを作成するための自動アプローチを開発する。
本稿では,(1)問題依存仮説空間の定義,(2)不確実性の下でこの空間を効率的に探索すること,(3)定式化の正しさを評価すること,の3つの課題を同定する。
論文 参考訳(メタデータ) (2024-11-03T20:41:38Z) - EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
Agentless - ソフトウェア開発の問題を自動解決するためのエージェントレスアプローチです。
Agentlessはエージェントベースのアプローチの冗長で複雑な設定と比較すると、ローカライゼーション、修復、パッチ検証の3フェーズプロセスをシンプルに採用している。
人気の高いSWE-bench Liteベンチマークの結果から、Agentlessは驚くほど高いパフォーマンスと低コストを達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-01T17:24:45Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - AlphaMath Almost Zero: Process Supervision without Process [6.318873143509028]
我々はモンテカルロ木探索(MCTS)を活用することによってプロセスアノテーションの必要性を回避できる革新的なフレームワークAlphaMathを提案する。
このフレームワークは、その数学的推論を自律的に強化する、よく訓練されたLLMの可能性を解き放つことに焦点を当てている。
ドメイン内データセットとドメイン外データセットの両方の実験結果から,GPT-4や人手によるプロセス監視がなくても,AlphaMathフレームワークは従来の最先端手法と同等あるいは優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-06T15:20:30Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Can Large Language Models Solve Robot Routing? [13.672207504142456]
大規模言語モデル(LLM)は、自然言語で記述されたタスクからロボットルートの生成へとパイプライン全体を置き換えることができる。
単一ロボットとマルチロボットの両方の設定において、8つの変種にまたがる80のユニークなロボットルーティング問題を持つデータセットを構築した。
その結果, 自己検証と自己検証は, 最適性ギャップを著しく低下させることなく, 成功率を高めることが明らかとなった。
論文 参考訳(メタデータ) (2024-03-16T03:54:38Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
大規模言語モデル(LLM)は、ブラウザやゲームのようなドメイン固有のソフトウェア内で複雑なタスクを実行するインテリジェントエージェントに権限を与えている。
LLMはオペレーティングシステムのような汎用ソフトウェアシステムに適用する際の3つの主要な課題に直面している。
これらの課題は、現代的なオペレーティングシステム上でLLMエージェントを評価するために設計された環境とベンチマークであるAndroidArenaを動機付けている。
論文 参考訳(メタデータ) (2024-02-09T18:19:25Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
MAPF (Multi-Agent Path Finding) は、複数のエージェントが同時に移動し、与えられた目標地点に向かって共有領域を通って衝突しない経路を決定する。
最適解を見つけることは、しばしば計算不可能であり、近似的な準最適アルゴリズムを用いることが不可欠である。
本稿では、MAPFのスケーラブルな機構設計の問題を紹介し、MAPFアルゴリズムを近似した3つの戦略防御機構を提案する。
論文 参考訳(メタデータ) (2024-01-30T14:26:04Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
算術的推論とコード生成という,2つの一般的な推論タスクに注目します。
i) 数学やコーディング問題に対する摂動の一般的なオントロジー, (ii) 摂動を応用するための半自動手法, (iii) 2つのデータセットを紹介する。
混乱した質問に対して、すべてのモデルで大幅なパフォーマンス低下を示します。
論文 参考訳(メタデータ) (2024-01-17T18:13:07Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。