Integrated quantum communication network and vibration sensing in optical fibers
- URL: http://arxiv.org/abs/2403.19989v2
- Date: Tue, 2 Apr 2024 03:35:20 GMT
- Title: Integrated quantum communication network and vibration sensing in optical fibers
- Authors: Shuaishuai Liu, Yan Tian, Yu Zhang, Zhenguo Lu, Xuyang Wang, Yongmin Li,
- Abstract summary: We propose and demonstrate a network architecture that integrates the downstream quantum access network (DQAN) and vibration sensing in optical fibers.
Our integrated architecture provides a viable and cost-effective solution for building a secure quantum communication sensor network.
- Score: 7.496429846787194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication and sensing technology play a significant role in various aspects of modern society. A seamless combination of the communication and the sensing systems is desired and have attracted great interests in recent years. Here, we propose and demonstrate a network architecture that integrating the downstream quantum access network (DQAN) and vibration sensing in optical fibers. By encoding the key information of eight users simultaneously on the sidemode quantum states of a single laser source and successively separating them by a filter network, we achieve a secure and efficient DQAN with an average key rate of 1.88*10^4 bits per second over an 80 km single-mode fiber. Meanwhile, the vibration location with spatial resolution of 120 m, 24 m, and 8 m at vibration frequencies of 100 Hz, 1 kHz, and 10 kHz, respectively, is implemented with the existing infrastructure of the DQAN system. Our integrated architecture provides a viable and cost-effective solution for building a secure quantum communication sensor network, and open the way for expanding the functionality of quantum communication networks.
Related papers
- Integrated distributed sensing and quantum communication networks [4.7922744779403015]
Integrated sensing and communication (ISAC) system based on optical fibers can accomplish various functionalities, such as urban structure imaging, seismic wave detection, and pipeline safety monitoring.
We propose an integrated sensing and quantum network (ISAQN) scheme, which can achieve secure key distribution among multiple nodes and distributed sensing under the standard quantum limit.
arXiv Detail & Related papers (2024-03-19T10:12:30Z) - Energy-time Entanglement Coexisting with Fiber Optical Communication at
Telecom C-band [11.687749207950633]
coexistence of quantum and classical light in the same fiber link is extremely desired in developing quantum communication.
We demonstrate the coexistence of energy-time entanglement based QKD and fiber optical communication at the telecom C-band.
arXiv Detail & Related papers (2023-05-30T02:41:06Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber
Distance [19.003857958984558]
Quantum key distribution (QKD) aims to generate secure private keys shared by two remote parties.
We demonstrate a fiber-based twin-field QKD over 1002 km.
The secure key rate is $9.53times10-12$ per pulse through 1002 km fiber in the regime, and $8.75times10-12$ per pulse at 952 km considering the finite size effect.
arXiv Detail & Related papers (2023-03-28T07:59:59Z) - High-dimensional quantum key distribution using energy-time entanglement
over 242 km partially deployed fiber [8.905152890117282]
Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication.
We report an experimental QKD using energy-time entangled photon pairs that transmit over optical fibers of 242 km.
We generate secure keys with secure key rates of 0.22 bps and 0.06 bps in and finite-size regime.
arXiv Detail & Related papers (2022-12-06T01:37:57Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - Continuous entanglement distribution over a transnational 248 km fibre
link [58.720142291102135]
Entanglement is the basis of many quantum applications.
We present a continuously working international link between Austria and Slovakia.
We measure stable pair rates of 9 s$-1$ over an exemplary operation time of 110 hours.
arXiv Detail & Related papers (2022-03-23T13:55:27Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Practical quantum access network over a 10 Gbit/s Ethernet passive
optical network [4.7347975272993805]
Quantum key distribution (QKD) provides an information-theoretically secure method to share keys between legitimate users.
We present a practical downstream QAN over a 10 Gbit/s Ethernet passive optical network (10G-EPON), which can support up to 64 users.
arXiv Detail & Related papers (2021-10-27T02:16:58Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.