ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning
- URL: http://arxiv.org/abs/2403.20126v1
- Date: Fri, 29 Mar 2024 11:31:12 GMT
- Title: ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning
- Authors: Beomyoung Kim, Joonsang Yu, Sung Ju Hwang,
- Abstract summary: Panoptic segmentation is a cutting-edge computer vision task.
We introduce a novel and efficient method for continual panoptic segmentation based on Visual Prompt Tuning, dubbed ECLIPSE.
Our approach involves freezing the base model parameters and fine-tuning only a small set of prompt embeddings, addressing both catastrophic forgetting and plasticity.
- Score: 54.68180752416519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panoptic segmentation, combining semantic and instance segmentation, stands as a cutting-edge computer vision task. Despite recent progress with deep learning models, the dynamic nature of real-world applications necessitates continual learning, where models adapt to new classes (plasticity) over time without forgetting old ones (catastrophic forgetting). Current continual segmentation methods often rely on distillation strategies like knowledge distillation and pseudo-labeling, which are effective but result in increased training complexity and computational overhead. In this paper, we introduce a novel and efficient method for continual panoptic segmentation based on Visual Prompt Tuning, dubbed ECLIPSE. Our approach involves freezing the base model parameters and fine-tuning only a small set of prompt embeddings, addressing both catastrophic forgetting and plasticity and significantly reducing the trainable parameters. To mitigate inherent challenges such as error propagation and semantic drift in continual segmentation, we propose logit manipulation to effectively leverage common knowledge across the classes. Experiments on ADE20K continual panoptic segmentation benchmark demonstrate the superiority of ECLIPSE, notably its robustness against catastrophic forgetting and its reasonable plasticity, achieving a new state-of-the-art. The code is available at https://github.com/clovaai/ECLIPSE.
Related papers
- Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks.
We modify specific context tokens, considering the unique structure of input and output formats.
Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss.
arXiv Detail & Related papers (2024-10-22T17:45:47Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - Visual Prompt Tuning in Null Space for Continual Learning [51.96411454304625]
Existing prompt-tuning methods have demonstrated impressive performances in continual learning (CL)
This paper aims to learn each task by tuning the prompts in the direction orthogonal to the subspace spanned by previous tasks' features.
In practice, an effective null-space-based approximation solution has been proposed to implement the prompt gradient projection.
arXiv Detail & Related papers (2024-06-09T05:57:40Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
Deep learning-based segmentation models have achieved impressive performance on public benchmarks, but generalizing well to unseen environments remains a major challenge.
This paper introduces Contrastive Loss (OCL), known for its capability to learn robust and generalized representations, to stabilize the adaptation process.
Our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.
arXiv Detail & Related papers (2023-11-14T03:13:47Z) - CoMFormer: Continual Learning in Semantic and Panoptic Segmentation [45.66711231393775]
We present the first continual learning model capable of operating on both semantic and panoptic segmentation.
Our method carefully exploits the properties of transformer architectures to learn new classes over time.
Our CoMFormer outperforms all the existing baselines by forgetting less old classes but also learning more effectively new classes.
arXiv Detail & Related papers (2022-11-25T10:15:06Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Modeling the Background for Incremental and Weakly-Supervised Semantic
Segmentation [39.025848280224785]
We introduce a novel incremental class learning approach for semantic segmentation.
Since each training step provides annotation only for a subset of all possible classes, pixels of the background class exhibit a semantic shift.
We demonstrate the effectiveness of our approach with an extensive evaluation on the Pascal-VOC, ADE20K, and Cityscapes datasets.
arXiv Detail & Related papers (2022-01-31T16:33:21Z) - Half-Real Half-Fake Distillation for Class-Incremental Semantic
Segmentation [84.1985497426083]
convolutional neural networks are ill-equipped for incremental learning.
New classes are available but the initial training data is not retained.
We try to address this issue by "inverting" the trained segmentation network to synthesize input images starting from random noise.
arXiv Detail & Related papers (2021-04-02T03:47:16Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
This paper focuses on class incremental continual learning in semantic segmentation.
New categories are made available over time while previous training data is not retained.
The proposed continual learning scheme shapes the latent space to reduce forgetting whilst improving the recognition of novel classes.
arXiv Detail & Related papers (2021-03-10T21:02:05Z) - Modeling the Background for Incremental Learning in Semantic
Segmentation [39.025848280224785]
Deep architectures are vulnerable to catastrophic forgetting.
This paper addresses this problem in the context of semantic segmentation.
We propose a new distillation-based framework which explicitly accounts for this shift.
arXiv Detail & Related papers (2020-02-03T13:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.