論文の概要: Motion Inversion for Video Customization
- arxiv url: http://arxiv.org/abs/2403.20193v1
- Date: Fri, 29 Mar 2024 14:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:34:34.124442
- Title: Motion Inversion for Video Customization
- Title(参考訳): 動画カスタマイズのためのモーションインバージョン
- Authors: Luozhou Wang, Guibao Shen, Yixun Liang, Xin Tao, Pengfei Wan, Di Zhang, Yijun Li, Yingcong Chen,
- Abstract要約: 映像生成モデルにおける動きのカスタマイズに関する新しいアプローチを提案する。
本手法では,映像から得られた時間的コヒーレントな1次元埋め込みの組であるモーション・エンベディングを導入する。
- 参考スコア(独自算出の注目度): 32.796303325195595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this research, we present a novel approach to motion customization in video generation, addressing the widespread gap in the thorough exploration of motion representation within video generative models. Recognizing the unique challenges posed by video's spatiotemporal nature, our method introduces Motion Embeddings, a set of explicit, temporally coherent one-dimensional embeddings derived from a given video. These embeddings are designed to integrate seamlessly with the temporal transformer modules of video diffusion models, modulating self-attention computations across frames without compromising spatial integrity. Our approach offers a compact and efficient solution to motion representation and enables complex manipulations of motion characteristics through vector arithmetic in the embedding space. Furthermore, we identify the Temporal Discrepancy in video generative models, which refers to variations in how different motion modules process temporal relationships between frames. We leverage this understanding to optimize the integration of our motion embeddings. Our contributions include the introduction of a tailored motion embedding for customization tasks, insights into the temporal processing differences in video models, and a demonstration of the practical advantages and effectiveness of our method through extensive experiments.
- Abstract(参考訳): 本研究では,映像生成モデルにおける映像表現の徹底的な探索において,映像生成における動きのカスタマイズという新たなアプローチを提案する。
ビデオの時空間的性質から生じる固有の課題を認識し,ビデオから得られる一次元の明示的で時間的に整合した埋め込みであるモーション・エンベディングを導入する。
これらの埋め込みは、ビデオ拡散モデルの時間変換モジュールとシームレスに統合され、空間的整合性を損なうことなくフレーム間の自己注意計算を変調するように設計されている。
提案手法は, 運動表現のコンパクトかつ効率的な解を提供し, 埋め込み空間におけるベクトル演算による運動特性の複雑な操作を可能にする。
さらに,映像生成モデルにおける時間差を同定し,異なる移動モジュールがフレーム間の時間的関係をどのように処理するかを示す。
この理解を活用して、モーション埋め込みの統合を最適化します。
コントリビューションには、カスタマイズタスクのための調整されたモーション埋め込みの導入、ビデオモデルにおける時間的処理の違いに関する洞察、広範囲な実験を通しての本手法の実用的メリットと有効性を実証することが含まれる。
関連論文リスト
- MotionMatcher: Motion Customization of Text-to-Video Diffusion Models via Motion Feature Matching [27.28898943916193]
テキスト・ツー・ビデオ(T2V)拡散モデルは、入力されたテキスト・プロンプトからリアルな動画を合成する有望な能力を持つ。
本研究では,モーションガイダンスとして参照映像が提供される動作カスタマイズ問題に取り組む。
我々は,事前学習したT2V拡散モデルを特徴レベルで微調整するモーションカスタマイズフレームワークであるMotionMatcherを提案する。
論文 参考訳(メタデータ) (2025-02-18T19:12:51Z) - Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models [18.41701130228042]
動きのカスタマイズは、拡散モデル(DM)に適応して、同じ動きの概念の一連のビデオクリップによって指定された動きを持つビデオを生成することを目的としている。
本稿では,TAP (temporal attention purification) とAH ( appearance highway) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-28T05:40:20Z) - MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models [59.10171699717122]
MoTransは、新しいコンテキストにおける類似した動きのビデオ生成を可能にする、カスタマイズされたモーション転送方式である。
再カプセル化されたプロンプトとビデオフレームからのマルチモーダル表現は、外観のモデリングを促進する。
本手法は, 特定の動きパターンを, 単一の参照ビデオや複数参照ビデオから効果的に学習する。
論文 参考訳(メタデータ) (2024-12-02T10:07:59Z) - Generalizable Implicit Motion Modeling for Video Frame Interpolation [51.966062283735596]
フローベースビデオフレーム補間(VFI)における動きの重要性
本稿では,動きモデリングVFIの新規かつ効果的なアプローチである一般インプリシット・モーション・モデリング(IMM)を紹介する。
我々のGIMMは、正確にモデル化された動きを供給することによって、既存のフローベースVFIワークと容易に統合できる。
論文 参考訳(メタデータ) (2024-07-11T17:13:15Z) - MotionClone: Training-Free Motion Cloning for Controllable Video Generation [41.621147782128396]
MotionCloneは、参照ビデオから多目的なモーションコントロールビデオ生成までのモーションクローンを可能にする、トレーニング不要のフレームワークである。
MotionCloneは、大域的なカメラの動きと局所的な物体の動きの両方の習熟度を示し、動きの忠実さ、テキストアライメント、時間的一貫性の点で顕著に優れている。
論文 参考訳(メタデータ) (2024-06-08T03:44:25Z) - MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion [94.66090422753126]
MotionFollowerは、ビデオモーション編集のための軽量なスコア誘導拡散モデルである。
優れたモーション編集性能を提供し、大きなカメラの動きとアクションのみをサポートする。
最新のモーション編集モデルであるMotionEditorと比較して、MotionFollowerはGPUメモリの約80%の削減を実現している。
論文 参考訳(メタデータ) (2024-05-30T17:57:30Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - Learning Variational Motion Prior for Video-based Motion Capture [31.79649766268877]
ビデオに基づくモーションキャプチャーのための新しい変分動作先行学習手法(VMP)を提案する。
我々のフレームワークはフレームワイドポーズ推定における時間的ジッタリングと障害モードを効果的に削減できる。
公開データセットとインザワイルドビデオの両方を用いた実験により、我々のフレームワークの有効性と一般化能力が実証された。
論文 参考訳(メタデータ) (2022-10-27T02:45:48Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
本稿では,映像コンテンツの動的性質を調査するための統合された行動認識フレームワークを提案する。
まず、局所的な手がかりを抽出する際に、動的スケールの時空間カーネルを生成し、多様な事象を適応的に適合させる。
第2に、これらのキューを正確にグローバルなビデオ表現に集約するために、トランスフォーマーによって選択されたいくつかの前景オブジェクト間のインタラクションのみをマイニングすることを提案する。
論文 参考訳(メタデータ) (2021-07-22T15:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。