論文の概要: Enhancing Lithological Mapping with Spatially Constrained Bayesian Network (SCB-Net): An Approach for Field Data-Constrained Predictions with Uncertainty Evaluation
- arxiv url: http://arxiv.org/abs/2403.20195v1
- Date: Fri, 29 Mar 2024 14:17:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:34:34.120626
- Title: Enhancing Lithological Mapping with Spatially Constrained Bayesian Network (SCB-Net): An Approach for Field Data-Constrained Predictions with Uncertainty Evaluation
- Title(参考訳): 空間制約ベイズネットワーク(SCB-Net)によるリソロジーマッピングの強化:不確実性評価を伴うフィールドデータ制約予測へのアプローチ
- Authors: Victor Silva dos Santos, Erwan Gloaguen, Shiva Tirdad,
- Abstract要約: SCB-Netは、空間的に制約された予測を生成しながら、補助変数からの情報を効果的に活用することを目的としている。
SCB-Netはカナダのケベック州北部の2つの地域に適用されている。
この研究は、特に複雑な空間的特徴学習タスクの処理において、ジオリニアにおけるディープニューラルネットワークの有望な進歩を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geological maps are an extremely valuable source of information for the Earth sciences. They provide insights into mineral exploration, vulnerability to natural hazards, and many other applications. These maps are created using numerical or conceptual models that use geological observations to extrapolate data. Geostatistical techniques have traditionally been used to generate reliable predictions that take into account the spatial patterns inherent in the data. However, as the number of auxiliary variables increases, these methods become more labor-intensive. Additionally, traditional machine learning methods often struggle with spatially correlated data and extracting valuable non-linear information from geoscientific datasets. To address these limitations, a new architecture called the Spatially Constrained Bayesian Network (SCB-Net) has been developed. The SCB-Net aims to effectively exploit the information from auxiliary variables while producing spatially constrained predictions. It is made up of two parts, the first part focuses on learning underlying patterns in the auxiliary variables while the second part integrates ground-truth data and the learned embeddings from the first part. Moreover, to assess model uncertainty, a technique called Monte Carlo dropout is used as a Bayesian approximation. The SCB-Net has been applied to two selected areas in northern Quebec, Canada, and has demonstrated its potential in generating field-data-constrained lithological maps while allowing assessment of prediction uncertainty for decision-making. This study highlights the promising advancements of deep neural networks in geostatistics, particularly in handling complex spatial feature learning tasks, leading to improved spatial information techniques.
- Abstract(参考訳): 地質地図は地球科学にとって非常に貴重な情報源である。
鉱物探査、自然災害への脆弱性、その他多くの応用に関する洞察を提供する。
これらの地図は、地質観測を用いてデータを外挿する数値モデルまたは概念モデルを用いて作成される。
測地学的手法は伝統的に、データに固有の空間パターンを考慮に入れた信頼性の高い予測を生成するために用いられてきた。
しかし、補助変数の数が増加するにつれて、これらの手法はより労働集約化される。
さらに、従来の機械学習手法は、空間的に相関したデータに苦しむことが多く、地質学的データセットから貴重な非線形情報を抽出する。
これらの制約に対処するため、空間制約ベイズネットワーク(SCB-Net)と呼ばれる新しいアーキテクチャが開発された。
SCB-Netは、空間的に制約された予測を生成しながら、補助変数からの情報を効果的に活用することを目的としている。
第1部は補助変数の下位パターンの学習に焦点をあて、第2部は接地構造データと第1部からの学習埋め込みを統合している。
さらに、モデルの不確実性を評価するために、モンテカルロ・ドロップアウトと呼ばれる手法がベイズ近似として用いられる。
SCB-Netは、カナダのケベック州北部で選択された2つの地域に適用され、フィールドデータに制約のあるリソロジーマップの生成と、意思決定における予測の不確実性の評価を可能にした。
本研究は、特に複雑な空間特徴学習タスクの処理において、統計学における深層ニューラルネットワークの有望な進歩を強調し、空間情報技術の改善につながった。
関連論文リスト
- Towards physics-informed neural networks for landslide prediction [1.03590082373586]
PINNは、一般的なプロキシ変数から地理的パラメータを明示的に取得するニューラルネットワークである。
我々のモデルは、標準感受性出力という形で優れた予測性能を生み出す。
このアーキテクチャは、他の研究で確認されれば、PINNベースの準リアルタイム予測に向けて開放される可能性がある、コサイスミックな地すべり予測に取り組むために構築されている。
論文 参考訳(メタデータ) (2024-07-09T11:54:49Z) - A Survey of Generative Techniques for Spatial-Temporal Data Mining [93.55501980723974]
本稿では,空間時間データマイニングにおける生成技術の統合に焦点を当てる。
本稿では,生成技術に基づく時空間法を包括的に分析する。
また、空間時間データマイニングパイプライン用に特別に設計された標準化されたフレームワークも導入されている。
論文 参考訳(メタデータ) (2024-05-15T12:07:43Z) - Exploring Geometric Deep Learning For Precipitation Nowcasting [28.44612565923532]
そこで我々は,降水量予測のための幾何学的深層学習に基づく時間的グラフ畳み込みネットワーク(GCN)を提案する。
格子セル間の相互作用をシミュレートする隣接行列は、予測と接地真理画素値とのL1損失を最小化することにより、自動的に学習される。
トレント/アイタリー地域におけるレーダ反射率マップの配列について実験を行った。
論文 参考訳(メタデータ) (2023-09-11T21:14:55Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility [5.864710987890994]
深部GA-vLSは、データが不規則なデータを扱うという課題に直面し、定形かつ規則的なテンソル形状のデータを仮定する。
本稿では,その再帰的メカニズムを維持しつつ,新たなデータ構造に基づくジオアウェアな学習操作を提案する。
論文 参考訳(メタデータ) (2022-11-27T16:51:28Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Bayesian deep learning for mapping via auxiliary information: a new era
for geostatistics? [3.5450828190071655]
深層ニューラルネットワークが、ポイントサンプリング対象変数とグリッド化された補助変数の間の複雑な関係をいかに学習できるかを示す。
モンテカルロ・ドロップアウト (Monte Carlo dropout) として知られるベイズ近似を用いて不確実性の推定値を得る。
論文 参考訳(メタデータ) (2020-08-17T13:56:43Z) - Improving Monocular Depth Estimation by Leveraging Structural Awareness
and Complementary Datasets [21.703238902823937]
視覚特徴の空間的関係を利用するために,空間的注意ブロックを有する構造認識ニューラルネットワークを提案する。
第2に,一様点対に対する大域的局所的相対損失を導入し,予測における空間的制約を増大させる。
第3に、先行手法の障害事例の分析に基づいて、挑戦シーンの新たなHard Case (HC) Depthデータセットを収集します。
論文 参考訳(メタデータ) (2020-07-22T08:21:02Z) - Seismic horizon detection with neural networks [62.997667081978825]
本稿では,複数の実地震立方体上での地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
本研究の主な貢献は,複数実地震立方体における地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
論文 参考訳(メタデータ) (2020-01-10T11:30:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。