論文の概要: Automatic Alignment of Discourse Relations of Different Discourse Annotation Frameworks
- arxiv url: http://arxiv.org/abs/2403.20196v1
- Date: Fri, 29 Mar 2024 14:18:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:24:49.827538
- Title: Automatic Alignment of Discourse Relations of Different Discourse Annotation Frameworks
- Title(参考訳): 異なる談話アノテーション・フレームワークにおける談話関係の自動アライメント
- Authors: Yingxue Fu,
- Abstract要約: 分類作業中にラベル埋め込みを学習するための完全自動アプローチを導入する。
これらの埋め込みは、異なるフレームワークの談話関係をマッピングするために使われる。
- 参考スコア(独自算出の注目度): 5.439020425819001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing discourse corpora are annotated based on different frameworks, which show significant dissimilarities in definitions of arguments and relations and structural constraints. Despite surface differences, these frameworks share basic understandings of discourse relations. The relationship between these frameworks has been an open research question, especially the correlation between relation inventories utilized in different frameworks. Better understanding of this question is helpful for integrating discourse theories and enabling interoperability of discourse corpora annotated under different frameworks. However, studies that explore correlations between discourse relation inventories are hindered by different criteria of discourse segmentation, and expert knowledge and manual examination are typically needed. Some semi-automatic methods have been proposed, but they rely on corpora annotated in multiple frameworks in parallel. In this paper, we introduce a fully automatic approach to address the challenges. Specifically, we extend the label-anchored contrastive learning method introduced by Zhang et al. (2022b) to learn label embeddings during a classification task. These embeddings are then utilized to map discourse relations from different frameworks. We show experimental results on RST-DT (Carlson et al., 2001) and PDTB 3.0 (Prasad et al., 2018).
- Abstract(参考訳): 既存の談話コーパスは異なるフレームワークに基づいて注釈付けされており、議論や関係、構造的制約の定義において大きな相違が見られる。
表面的な違いにもかかわらず、これらのフレームワークは談話関係に関する基本的な理解を共有している。
これらのフレームワーク間の関係は、オープンな研究課題であり、特に異なるフレームワークで使用されている関係在庫間の関係性である。
この質問をよりよく理解することは、談話理論の統合と、異なるフレームワークで注釈付けされた談話コーパスの相互運用性の実現に役立ちます。
しかしながら、談話関係在庫間の相関関係を探求する研究は、談話セグメンテーションの異なる基準によって妨げられ、専門家の知識と手作業による検査が必要とされるのが一般的である。
いくつかのセミオートマチックな手法が提案されているが、複数のフレームワークで同時に注釈付けされたコーパスに依存している。
本稿では,課題に対処するための完全自動アプローチを提案する。
具体的には、Zhang et al (2022b) が導入したラベルアンコール型コントラスト学習法を拡張し、分類作業中にラベル埋め込みを学習する。
これらの埋め込みは、異なるフレームワークの談話関係をマッピングするために使われる。
RST-DT (Carlson et al , 2001) とPDTB 3.0 (Prasad et al , 2018) について検討した。
関連論文リスト
- Multi-Label Classification for Implicit Discourse Relation Recognition [10.280148603465697]
暗黙的な談話関係認識のための多言語分類フレームワークについて検討する。
本研究では,複数ラベルの分類手法が単一ラベルの予測性能を低下させないことを示す。
論文 参考訳(メタデータ) (2024-06-06T19:37:25Z) - Discourse Relations Classification and Cross-Framework Discourse
Relation Classification Through the Lens of Cognitive Dimensions: An
Empirical Investigation [5.439020425819001]
We show that discourse relations can be effectively capture by some simple Cognitively inspired dimensions by Sanders et al.(2018)
クロスフレームな談話関係分類(PDTB & RST)に関する実験により,あるフレームワークの談話関係に関する知識を,これらの次元を用いて他のフレームワークに伝達できることが実証された。
論文 参考訳(メタデータ) (2023-11-01T11:38:19Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
本稿では,対話談話特性を最大限に活用し,対話の絡み合いを高めることを提案する。
我々は,会話の意味的文脈をより良くモデル化するために,リッチな構造的特徴を統合する構造認識フレームワークを開発した。
我々の研究は、より広範なマルチスレッド対話アプリケーションを促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-06T19:17:47Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and
Entailment Recognition [63.51569687229681]
文中の各命題の文的含意関係を個別に認識する必要性について論じる。
提案するPropSegmEntは45K以上の提案のコーパスであり, 専門家によるアノテートを行う。
我々のデータセット構造は、(1)文書内の文章を命題の集合に分割し、(2)異なるが、トポジカルに整合した文書に対して、各命題の含意関係を分類するタスクに類似している。
論文 参考訳(メタデータ) (2022-12-21T04:03:33Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
文埋め込みの可能性を明らかにするための新しいパラダイムとして,文埋め込み(Sentence Embedding, RSE)を提案する。
RSEは文関係のモデル化に有効で柔軟性があり、一連の最先端の埋め込み手法より優れている。
論文 参考訳(メタデータ) (2022-12-17T05:25:17Z) - Towards Unification of Discourse Annotation Frameworks [0.0]
我々は,異なるフレームワーク間の系統的関係を調査し,フレームワークを統一する手法を考案する。
フレームワーク統合の問題は長い間議論の的だったが、現時点では包括的なアプローチはない。
我々は、統合タスクに自動手段を使用し、構造的な複雑さと下流タスクで結果を評価する計画である。
論文 参考訳(メタデータ) (2022-04-16T11:34:00Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
本稿では、文脈経路に沿った2つの議論間の談話関係が、議論の説得力を特定する上で不可欠な要素であることを実証的に示す。
本研究では,文レベルの構造情報を大規模言語モデルから派生した文脈的特徴に注入・融合するDisCOCを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:49:19Z) - Discourse Relation Embeddings: Representing the Relations between
Discourse Segments in Social Media [8.51950029432202]
対話関係を高次元連続空間の点として表現することを提案する。
言葉とは異なり、談話関係はしばしば表面形式を持たない。
談話関係の埋め込みを自動的に生成する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T05:58:27Z) - Unifying Discourse Resources with Dependency Framework [18.498060350460463]
異なるアノテーション・スキームで中国の談話コーパスを談話依存フレームワークで統一する。
ベンチマークの依存関係をいくつか実装し、統一されたデータをどのように活用してパフォーマンスを向上させるかの研究を行っています。
論文 参考訳(メタデータ) (2021-01-01T05:23:29Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。