論文の概要: The Future of Combating Rumors? Retrieval, Discrimination, and Generation
- arxiv url: http://arxiv.org/abs/2403.20204v1
- Date: Fri, 29 Mar 2024 14:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:24:49.813649
- Title: The Future of Combating Rumors? Retrieval, Discrimination, and Generation
- Title(参考訳): 燃焼噂の将来 : 検索・識別・発生
- Authors: Junhao Xu, Longdi Xian, Zening Liu, Mingliang Chen, Qiuyang Yin, Fenghua Song,
- Abstract要約: 人工知能生成コンテンツ(AIGC)技術開発は、誤情報による噂の作成を促進する。
現在の噂検出努力は、誤報を単にラベル付けするだけで不足している。
提案手法は,噂を検知するだけでなく,情報の有効性を否定する説明的コンテンツも提供する。
- 参考スコア(独自算出の注目度): 5.096418029931098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence Generated Content (AIGC) technology development has facilitated the creation of rumors with misinformation, impacting societal, economic, and political ecosystems, challenging democracy. Current rumor detection efforts fall short by merely labeling potentially misinformation (classification task), inadequately addressing the issue, and it is unrealistic to have authoritative institutions debunk every piece of information on social media. Our proposed comprehensive debunking process not only detects rumors but also provides explanatory generated content to refute the authenticity of the information. The Expert-Citizen Collective Wisdom (ECCW) module we designed aensures high-precision assessment of the credibility of information and the retrieval module is responsible for retrieving relevant knowledge from a Real-time updated debunking database based on information keywords. By using prompt engineering techniques, we feed results and knowledge into a LLM (Large Language Model), achieving satisfactory discrimination and explanatory effects while eliminating the need for fine-tuning, saving computational costs, and contributing to debunking efforts.
- Abstract(参考訳): 人工知能生成コンテンツ(AIGC)技術開発は、誤情報による噂の創造を促進し、社会、経済、政治のエコシステムに影響を与え、民主主義に挑戦している。
現在のうわさ検出努力は、潜在的な誤情報(分類タスク)を単にラベル付けするだけでは不十分であり、問題に不適切な対処を行っており、権威ある機関がソーシャルメディア上の情報を全て取り除くことは現実的ではない。
提案手法は,噂を検知するだけでなく,情報の有効性を否定する説明的コンテンツも提供する。
筆者らが設計したECCW(Expert-Citizen Collective Wisdom)モジュールは,情報の信頼性を高精度に評価し,検索モジュールは情報キーワードに基づいたリアルタイム更新復号データベースから関連知識を検索する役割を担っている。
素早い工学的手法を用いて、結果と知識をLLM(Large Language Model)に供給し、微調整、計算コストの削減、分散化への貢献を省きながら、良好な識別と説明効果を達成する。
関連論文リスト
- Missci: Reconstructing Fallacies in Misrepresented Science [84.32990746227385]
ソーシャルネットワーク上の健康関連の誤報は、意思決定の貧弱さと現実世界の危険につながる可能性がある。
ミスシは、誤った推論のための新しい議論理論モデルである。
大規模言語モデルの批判的推論能力をテストするためのデータセットとしてMissciを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:11:10Z) - Countering Misinformation via Emotional Response Generation [15.383062216223971]
ソーシャルメディアプラットフォーム(SMP)における誤情報拡散は、公衆衛生、社会的結束、民主主義に重大な危険をもたらす。
これまでの研究では、社会的訂正が誤情報を抑制する効果的な方法であることが示された。
約1万のクレーム応答対からなる最初の大規模データセットであるVerMouthを提案する。
論文 参考訳(メタデータ) (2023-11-17T15:37:18Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - Reinforcement Learning-based Counter-Misinformation Response Generation:
A Case Study of COVID-19 Vaccine Misinformation [19.245814221211415]
非熟練の一般ユーザーは、偽情報に対して積極的に対応している。
本研究では、誤情報と反誤情報応答のペアの2つの新しいデータセットを作成する。
我々は,反情報応答を学習する強化学習に基づくフレームワークであるMisinfoCorrectを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:55:01Z) - Addressing contingency in algorithmic (mis)information classification:
Toward a responsible machine learning agenda [0.9659642285903421]
データサイエンティストは、モデルトレーニングとテストに使用される「真実の情報源の客観性、信頼性、正当性」にスタンスを取る必要がある。
彼らの報告された高い正確さと性能にもかかわらず、ML駆動のモデレーションシステムは、オンラインの公開討論を形作り、不正な検閲や偽の信念の強化のような下流のネガティブな影響を生み出す可能性がある。
論文 参考訳(メタデータ) (2022-10-05T17:34:51Z) - Synthetic Disinformation Attacks on Automated Fact Verification Systems [53.011635547834025]
本研究では,2つのシミュレーション環境において,自動ファクトチェッカーの合成正反対証拠に対する感度について検討する。
これらのシステムでは,これらの攻撃に対して大幅な性能低下がみられた。
偽情報の発生源としての現代のNLGシステムの脅威の増大について論じる。
論文 参考訳(メタデータ) (2022-02-18T19:01:01Z) - Attacking Open-domain Question Answering by Injecting Misinformation [116.25434773461465]
質問応答モデル(QA)に対する誤報のリスクについて,オープンドメインQAモデルの誤報文書に対する感度について検討した。
実験により、QAモデルは誤情報による少量の証拠汚染に対して脆弱であることが示されている。
質問応答と誤情報検出を統合した誤情報認識型QAシステムの構築の必要性について論じる。
論文 参考訳(メタデータ) (2021-10-15T01:55:18Z) - An Agenda for Disinformation Research [3.083055913556838]
情報化は民主主義の基本的な基盤である社会政治機関への信頼を損なう。
偽り、誤解を招いたり、不正確な情報を欺く意図で配信することは、アメリカ合衆国にとって現実的な脅威である。
この成長する課題を理解し、対処するために、これらの余裕を活用するために、新しいツールとアプローチを開発する必要があります。
論文 参考訳(メタデータ) (2020-12-15T19:32:36Z) - Sentimental LIAR: Extended Corpus and Deep Learning Models for Fake
Claim Classification [11.650381752104296]
本稿では,ソーシャルメディア上での誤文クレームの自動検出のための新しい深層学習手法を提案する。
まず,感傷的LIARを紹介する。このLIARデータセットは,クレームの感情分析と感情分析に基づく特徴を加えることで,短いクレームのLIARデータセットを拡張する。
この結果から,センチメンタルLIARでトレーニングしたアーキテクチャでは70%の精度が得られ,従来報告したLIARベンチマークよりも30%向上したことがわかった。
論文 参考訳(メタデータ) (2020-09-01T02:48:11Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。