論文の概要: Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation
- arxiv url: http://arxiv.org/abs/2403.20289v1
- Date: Fri, 29 Mar 2024 17:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:05:12.193072
- Title: Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation
- Title(参考訳): 会話における感情認識のための感情認識型コントラスト学習フレームワーク
- Authors: Fangxu Yu, Junjie Guo, Zhen Wu, Xinyu Dai,
- Abstract要約: 会話における感情認識(英: Emotion Recognition in Conversation、ERC)とは、会話の中で各発話の背後にある感情を検出することである。
類似した感情に対してより識別可能な発話表現を生成できる感情認識コントラスト学習フレームワークを提案する。
提案したEACLは、最先端の感情認識性能を達成し、類似した感情に対して優れた性能を示す。
- 参考スコア(独自算出の注目度): 23.309174697717374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion Recognition in Conversation (ERC) involves detecting the underlying emotion behind each utterance within a conversation. Effectively generating representations for utterances remains a significant challenge in this task. Recent works propose various models to address this issue, but they still struggle with differentiating similar emotions such as excitement and happiness. To alleviate this problem, We propose an Emotion-Anchored Contrastive Learning (EACL) framework that can generate more distinguishable utterance representations for similar emotions. To achieve this, we utilize label encodings as anchors to guide the learning of utterance representations and design an auxiliary loss to ensure the effective separation of anchors for similar emotions. Moreover, an additional adaptation process is proposed to adapt anchors to serve as effective classifiers to improve classification performance. Across extensive experiments, our proposed EACL achieves state-of-the-art emotion recognition performance and exhibits superior performance on similar emotions. Our code is available at https://github.com/Yu-Fangxu/EACL.
- Abstract(参考訳): 会話における感情認識(英: Emotion Recognition in Conversation、ERC)とは、会話の中で各発話の背後にある感情を検出することである。
発話表現を効果的に生成することは、この課題において重要な課題である。
近年の研究では、この問題に対処する様々なモデルが提案されているが、興奮や幸福といった同様の感情の差別化に苦慮している。
この問題を軽減するために、類似した感情に対してより識別可能な発話表現を生成できる感情アンコール型コントラスト学習(EACL)フレームワークを提案する。
これを実現するために、ラベルエンコーディングをアンカーとして利用し、発話表現の学習を誘導し、補助的損失を設計し、類似した感情に対する効果的なアンカー分離を確保する。
さらに, アンカーを適応して効果的な分類器として機能し, 分類性能を向上させるための追加適応法を提案する。
広範囲にわたる実験を通じて,提案したEACLは,最先端の感情認識性能を達成し,類似した感情に対して優れた性能を示す。
私たちのコードはhttps://github.com/Yu-Fangxu/EACLで公開されています。
関連論文リスト
- ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
感情音声変換(Emotional Voice Conversion)は、非感情成分を保存しながら、与えられた感情に応じて音声を操作することを目的とする。
本稿では,音声変換にインスタンスワイドな感情知識を活用する,意図に基づく対話型ディスタングネットワーク(AINN)を提案する。
論文 参考訳(メタデータ) (2023-12-29T08:06:45Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - Contrast and Generation Make BART a Good Dialogue Emotion Recognizer [38.18867570050835]
対話型感情認識において、話者依存との長期的文脈的感情関係が重要な役割を担っている。
教師付きコントラスト学習を用いて、異なる感情を相互に排他的に区別し、類似した感情をよりよく識別する。
我々は、文脈情報を扱うモデルの能力を高めるために補助応答生成タスクを利用する。
論文 参考訳(メタデータ) (2021-12-21T13:38:00Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
感情的テキスト音声合成(ETTS)は近年大きく進歩している。
i-ETTSと呼ばれるETTSの新しい対話型トレーニングパラダイムを提案する。
i-ETTSの最適化品質を確保するため、強化学習による反復トレーニング戦略を策定します。
論文 参考訳(メタデータ) (2021-04-03T13:52:47Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
マルチラベル感情分類をスパンプレディションとした新しいモデル「SpanEmo」を提案する。
入力文中の複数の共存感情をモデル化することに焦点を当てた損失関数を導入する。
SemEval2018マルチラベル感情データを3つの言語セットで実験した結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-01-25T12:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。