Localising the Seizure Onset Zone from Single-Pulse Electrical Stimulation Responses with a CNN Transformer
- URL: http://arxiv.org/abs/2403.20324v3
- Date: Tue, 27 Aug 2024 14:53:41 GMT
- Title: Localising the Seizure Onset Zone from Single-Pulse Electrical Stimulation Responses with a CNN Transformer
- Authors: Jamie Norris, Aswin Chari, Dorien van Blooijs, Gerald Cooray, Karl Friston, Martin Tisdall, Richard Rosch,
- Abstract summary: Epilepsy is one of the most common neurological disorders, often requiring surgical intervention when medication fails to control seizures.
For effective surgical outcomes, precise localisation of the epileptogenic focus is critical yet remains a challenge.
Our study advances the application of deep learning for SOZ localisation using Single-Pulse Electrical Stimulation (SPES) responses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Epilepsy is one of the most common neurological disorders, often requiring surgical intervention when medication fails to control seizures. For effective surgical outcomes, precise localisation of the epileptogenic focus - often approximated through the Seizure Onset Zone (SOZ) - is critical yet remains a challenge. Active probing through electrical stimulation is already standard clinical practice for identifying epileptogenic areas. Our study advances the application of deep learning for SOZ localisation using Single-Pulse Electrical Stimulation (SPES) responses, with two key contributions. Firstly, we implement an existing deep learning model to compare two SPES analysis paradigms: divergent and convergent. These paradigms evaluate outward and inward effective connections, respectively. We assess the generalisability of these models to unseen patients and electrode placements using held-out test sets. Our findings reveal a notable improvement in moving from a divergent (AUROC: 0.574) to a convergent approach (AUROC: 0.666), marking the first application of the latter in this context. Secondly, we demonstrate the efficacy of CNN Transformers with cross-channel attention in handling heterogeneous electrode placements, increasing the AUROC to 0.730. These findings represent a significant step in modelling patient-specific intracranial EEG electrode placements in SPES. Future work will explore integrating these models into clinical decision-making processes to bridge the gap between deep learning research and practical healthcare applications.
Related papers
- STIED: A deep learning model for the SpatioTemporal detection of focal Interictal Epileptiform Discharges with MEG [0.08030359871216612]
Magnetoencephalography (MEG) allows the non-invasive detection of interictal epileptiform discharges (IEDs)
Deep learning (DL) could revolutionize clinical MEG practice.
We developed STIED, a powerful yet supervised DL algorithm combining two convolutional neural networks with temporal (1D time-course) and spatial (2D topography) features of MEG signals.
arXiv Detail & Related papers (2024-10-30T18:41:22Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEG stands for Robust Inter-Subject Electrode Implantation Variability iEEG.
We developed an iEEG decoder model that can be applied across multiple patients' data without requiring the coordinates of electrode for each patient.
Our analysis shows that the performance of RISE-iEEG is 10% higher than that of HTNet and EEGNet in terms of F1 score.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge [30.611482996378683]
Image and disease variability hinder the development of generalizable AI algorithms with clinical value.
We present a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion (ISLES) challenge.
We combined top-performing algorithms into an ensemble model that overcomes the limitations of individual solutions.
arXiv Detail & Related papers (2024-03-28T13:56:26Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - End-to-end semantic segmentation of personalized deep brain structures
for non-invasive brain stimulation [2.750124853532831]
Transcranial direct current stimulation (tDCS) is widely used as an affordable clinical application that is applied through electrodes attached to the scalp.
It is difficult to determine the amount and distribution of the electric field (EF) in the different brain regions due to anatomical complexity and high intersubject variability.
In this study, a single-encoder multi-decoders convolutional neural network is proposed for deep brain segmentation.
arXiv Detail & Related papers (2020-02-13T13:17:25Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.