STIED: A deep learning model for the SpatioTemporal detection of focal Interictal Epileptiform Discharges with MEG
- URL: http://arxiv.org/abs/2410.23386v1
- Date: Wed, 30 Oct 2024 18:41:22 GMT
- Title: STIED: A deep learning model for the SpatioTemporal detection of focal Interictal Epileptiform Discharges with MEG
- Authors: Raquel Fernández-Martín, Alfonso Gijón, Odile Feys, Elodie Juvené, Alec Aeby, Charline Urbain, Xavier De Tiège, Vincent Wens,
- Abstract summary: Magnetoencephalography (MEG) allows the non-invasive detection of interictal epileptiform discharges (IEDs)
Deep learning (DL) could revolutionize clinical MEG practice.
We developed STIED, a powerful yet supervised DL algorithm combining two convolutional neural networks with temporal (1D time-course) and spatial (2D topography) features of MEG signals.
- Score: 0.08030359871216612
- License:
- Abstract: Magnetoencephalography (MEG) allows the non-invasive detection of interictal epileptiform discharges (IEDs). Clinical MEG analysis in epileptic patients traditionally relies on the visual identification of IEDs, which is time consuming and partially subjective. Automatic, data-driven detection methods exist but show limited performance. Still, the rise of deep learning (DL)-with its ability to reproduce human-like abilities-could revolutionize clinical MEG practice. Here, we developed and validated STIED, a simple yet powerful supervised DL algorithm combining two convolutional neural networks with temporal (1D time-course) and spatial (2D topography) features of MEG signals inspired from current clinical guidelines. Our DL model enabled both temporal and spatial localization of IEDs in patients suffering from focal epilepsy with frequent and high amplitude spikes (FE group), with high-performance metrics-accuracy, specificity, and sensitivity all exceeding 85%-when learning from spatiotemporal features of IEDs. This performance can be attributed to our handling of input data, which mimics established clinical MEG practice. Reverse engineering further revealed that STIED encodes fine spatiotemporal features of IEDs rather than their mere amplitude. The model trained on the FE group also showed promising results when applied to a separate group of presurgical patients with different types of refractory focal epilepsy, though further work is needed to distinguish IEDs from physiological transients. This study paves the way of incorporating STIED and DL algorithms into the routine clinical MEG evaluation of epilepsy.
Related papers
- Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
arXiv Detail & Related papers (2024-08-20T13:11:43Z) - SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE.
Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
arXiv Detail & Related papers (2024-06-25T13:21:01Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Power Spectral Density-Based Resting-State EEG Classification of
First-Episode Psychosis [1.3416169841532526]
We show the effectiveness of stimulus-independent EEG in identifying the abnormal activity patterns of pathological brains.
A generalized model incorporating multiple frequency bands should be more efficient in associating potential EEG biomarkers with First-Episode Psychosis (FEP)
A comprehensive discussion of our preprocessing methods for PSD analysis and a detailed comparison of different models are included in this paper.
arXiv Detail & Related papers (2022-11-23T00:28:41Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.