Modelling the Impact of Quantum Circuit Imperfections on Networks and Computer Applications
- URL: http://arxiv.org/abs/2404.00062v3
- Date: Sun, 26 May 2024 15:29:02 GMT
- Title: Modelling the Impact of Quantum Circuit Imperfections on Networks and Computer Applications
- Authors: Savo Glisic,
- Abstract summary: Post Quantum and Quantum Cryptography schemes are feasible quantum computer applications for 7G networks.
These algorithms have been compromised by advances in quantum search algorithms run on quantum computers like Shor algorithm.
- Score: 0.31908919831471466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post Quantum and Quantum Cryptography schemes are feasible quantum computer applications for 7G networks. These schemes could possibly replace existing schemes. These algorithms have been compromised by advances in quantum search algorithms run on quantum computers like Shor algorithm. Shor algorithm is a quantum algorithm for finding the prime factors of an integer which is the basis of existing algorithm. This has become an available quantum computer application putting the use of ESA algorithm at risk. Our recent paper provides a detailed survey of the work on post quantum and quantum cryptography algorithms with focus on their applicability in 7G networks. Since the paper focuses on the cryptography algorithms as a follow up, in this paper, we provide a new framework for quantum network optimization and survey in detail the work on enabling technologies (quantum hardware) for the practical implementation of these algorithms including the most important segments of quantum hardware in 7G. As always in engineering practice practical solutions are a compromise between the performance and complexity of the implementation. For this reason, as the main contribution, the paper presents a network and computer applications optimization framework that includes implementation imperfections. The tools should be useful in optimizing future generation practical computer system design. After that a comprehensive survey of the existing work on quantum hardware is presented pointing out the sources of these imperfections. This enables us to make a fair assessment of how much investment into quantum hardware improvements contributes to the performance enhancement of the overall system. In this way a decision can be made on proper partitioning between the investment in hardware and system level complexity.
Related papers
- Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Simulating Noisy Quantum Circuits for Cryptographic Algorithms [0.0]
Key algorithms used in cybersecurity are vulnerable to quantum computers.
Many different quantum algorithms have been developed, which have potentially broad applications.
Software co-design refers to the concurrent design of software and hardware.
arXiv Detail & Related papers (2023-06-03T13:37:45Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - Noisy intermediate-scale quantum (NISQ) algorithms [0.5325753548715747]
A universal fault-tolerant quantum computer that can solve efficiently problems such as integer factorization and unstructured database search requires millions of qubits with low error rates and long coherence times.
While the experimental advancement towards realizing such devices will potentially take decades of research, noisy intermediate-scale quantum (NISQ) computers already exist.
These computers are composed of hundreds of noisy qubits, i.e. qubits that are not error-corrected, and therefore perform imperfect operations in a limited coherence time.
arXiv Detail & Related papers (2021-01-21T05:27:34Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - A Roadmap for Automating the Selection of Quantum Computers for Quantum
Algorithms [0.39146761527401425]
Some quantum algorithms already exist that show a theoretical speedup compared to the best known classical algorithms.
The input data determines, e.g., the required number of qubits and gates of a quantum algorithm.
An algorithm implementation also depends on the used Software Development Kit which restricts the set of usable quantum computers.
arXiv Detail & Related papers (2020-03-30T12:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.