論文の概要: Robust Ensemble Person Re-Identification via Orthogonal Fusion with Occlusion Handling
- arxiv url: http://arxiv.org/abs/2404.00107v1
- Date: Fri, 29 Mar 2024 18:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 07:17:12.632789
- Title: Robust Ensemble Person Re-Identification via Orthogonal Fusion with Occlusion Handling
- Title(参考訳): 咬合ハンドリングによる直交核融合によるロバストアンサンブル人物再同定
- Authors: Syeda Nyma Ferdous, Xin Li,
- Abstract要約: 排除は、個人再識別(ReID)における大きな課題の1つとして残されている。
本稿では,CNN と Transformer アーキテクチャを併用し,ロバストな特徴表現を生成する深層アンサンブルモデルを提案する。
- 参考スコア(独自算出の注目度): 4.431087385310259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Occlusion remains one of the major challenges in person reidentification (ReID) as a result of the diversity of poses and the variation of appearances. Developing novel architectures to improve the robustness of occlusion-aware person Re-ID requires new insights, especially on low-resolution edge cameras. We propose a deep ensemble model that harnesses both CNN and Transformer architectures to generate robust feature representations. To achieve robust Re-ID without the need to manually label occluded regions, we propose to take an ensemble learning-based approach derived from the analogy between arbitrarily shaped occluded regions and robust feature representation. Using the orthogonality principle, our developed deep CNN model makes use of masked autoencoder (MAE) and global-local feature fusion for robust person identification. Furthermore, we present a part occlusion-aware transformer capable of learning feature space that is robust to occluded regions. Experimental results are reported on several Re-ID datasets to show the effectiveness of our developed ensemble model named orthogonal fusion with occlusion handling (OFOH). Compared to competing methods, the proposed OFOH approach has achieved competent rank-1 and mAP performance.
- Abstract(参考訳): オークルージョンは、ポーズの多様性と外観の変化の結果、個人再識別(ReID)における大きな課題の1つとして残されている。
隠蔽を意識したRe-IDの堅牢性を改善するために新しいアーキテクチャを開発するには、特に低解像度のエッジカメラにおいて、新しい洞察が必要である。
本稿では,CNN と Transformer アーキテクチャを併用し,ロバストな特徴表現を生成する深層アンサンブルモデルを提案する。
手動で隠蔽領域をラベル付けすることなく、ロバストなRe-IDを実現するため、任意形状の隠蔽領域とロバストな特徴表現との類似性から、アンサンブル学習に基づくアプローチを提案する。
直交原理を用いて,マスク付きオートエンコーダ(MAE)とグローバルな特徴フュージョンを用いて,ロバストな人物識別を行う。
さらに,閉鎖領域に頑健な特徴空間を学習できる部分閉塞認識変換器を提案する。
いくつかのRe-IDデータセットを用いて,OFOHを用いた直交融合モデルの有効性を示す実験結果が報告された。
競合手法と比較して,提案手法は有能なランク1およびmAP性能を実現している。
関連論文リスト
- Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection [30.02748131967826]
教師なしのアウト・オブ・ディストリビューション(OOD)検出は、未ラベルのIn-Distribution(ID)トレーニングサンプルからのみ学習することで、ドメイン外のデータを識別することを目的としている。
現在の再構成手法は, 画素/機能空間における入力と対応する生成物間の再構成誤差を測定することで, 優れた代替手法を提供する。
拡散に基づく階層的意味再構成手法を提案する。
論文 参考訳(メタデータ) (2024-11-16T04:54:07Z) - Pose-Transformation and Radial Distance Clustering for Unsupervised Person Re-identification [5.522856885199346]
人物再識別(re-ID)は、重複しないカメラ間での同一性マッチングの問題に対処することを目的としている。
監視されたアプローチでは、取得が困難になり、トレーニング対象のデータセットに対して本質的にバイアスがかかる可能性のあるID情報が必要となる。
本稿では,真のラベルの知識をゼロにすることで,学習した特徴の識別能力を向上する手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T20:55:30Z) - Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
我々はトランスフォーマーに基づく人物識別フレームワークであるSSSC-TransReIDを組み合わせた新しい自己監督・監督手法を提案した。
我々は、ネガティブなサンプルや追加の事前学習なしに、人物の再識別のための特徴表現を強化することができる自己教師付きコントラスト学習ブランチを設計した。
提案モデルでは, 平均平均精度(mAP) とランク1の精度において, 最先端のReID手法よりも優れたRe-ID性能が得られ, 高いマージンで性能が向上する。
論文 参考訳(メタデータ) (2024-10-21T03:17:25Z) - Dynamic Patch-aware Enrichment Transformer for Occluded Person
Re-Identification [14.219232629274186]
DPEFormer(Dynamic Patch-aware Enrichment Transformer)と呼ばれるエンドツーエンドのソリューションを提案する。
このモデルは,人体情報と隠蔽情報を自動的かつ動的に識別する。
DPSM と DPEFormer 全体が識別ラベルのみを用いて効果的に学習できることを保証するため,本手法では,実効性を有する Occlusion Augmentation (ROA) 戦略も提案する。
論文 参考訳(メタデータ) (2024-02-16T03:53:30Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Feature Completion Transformer for Occluded Person Re-identification [25.159974510754992]
咬合者の再同定(Re-ID)は,咬合者の破壊による課題である。
特徴空間に隠された部分の意味情報を暗黙的に補完する特徴補完変換器(FCFormer)を提案する。
FCFormerは優れたパフォーマンスを実現し、隠蔽されたデータセットに対してかなりのマージンで最先端の手法を上回ります。
論文 参考訳(メタデータ) (2023-03-03T01:12:57Z) - Dynamic Prototype Mask for Occluded Person Re-Identification [88.7782299372656]
既存の手法では、目に見える部分を識別するために、余分なネットワークによって提供される身体の手がかりを利用することで、この問題に対処している。
2つの自己明快な事前知識に基づく新しい動的プロトタイプマスク(DPM)を提案する。
この条件下では、隠蔽された表現は、選択された部分空間において自然にうまく整列することができる。
論文 参考訳(メタデータ) (2022-07-19T03:31:13Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z) - Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond [59.149653740463435]
人物再識別(re-ID)は、同一人物の画像をカメラビューでマッチングすることを目的としている。
カメラと関心のある人の距離が異なるため、解像度ミスマッチが期待できる。
本稿では,クロスレゾリューションな人物のリIDに対処する新たな生成的対向ネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T07:21:38Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。