AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
- URL: http://arxiv.org/abs/2404.00204v4
- Date: Sun, 1 Sep 2024 01:37:04 GMT
- Title: AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
- Authors: Junyang Zhang, Cristian Emanuel Ocampo Rivera, Kyle Tyni, Steven Nguyen, Ulices Santa Cruz Leal, Yasser Shoukry,
- Abstract summary: AirPilot is a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller.
AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL.
Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%.
- Score: 1.947822083318316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.
Related papers
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100.
The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers.
arXiv Detail & Related papers (2024-10-03T17:50:19Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Reaching the Limit in Autonomous Racing: Optimal Control versus
Reinforcement Learning [66.10854214036605]
A central question in robotics is how to design a control system for an agile mobile robot.
We show that a neural network controller trained with reinforcement learning (RL) outperformed optimal control (OC) methods in this setting.
Our findings allowed us to push an agile drone to its maximum performance, achieving a peak acceleration greater than 12 times the gravitational acceleration and a peak velocity of 108 kilometers per hour.
arXiv Detail & Related papers (2023-10-17T02:40:27Z) - Self-Tuning PID Control via a Hybrid Actor-Critic-Based Neural Structure
for Quadcopter Control [0.0]
Proportional-Integrator-Derivative (PID) controller is used in a wide range of industrial and experimental processes.
Due to the uncertainty of model parameters and external disturbances, real systems such as Quadrotors need more robust and reliable PID controllers.
In this research, a self-tuning PID controller using a Reinforcement-Learning-based Neural Network has been investigated.
arXiv Detail & Related papers (2023-07-03T19:35:52Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
State-of-the art robotic applications utilize series elastic actuators (SEAs) with closed-loop force control to achieve complex tasks such as walking, lifting, and manipulation.
Model-free PID control methods are more prone to instability due to nonlinearities in the SEA.
Deep reinforcement learning has proved to be an effective model-free method for continuous control tasks.
arXiv Detail & Related papers (2023-04-11T00:51:47Z) - Training Efficient Controllers via Analytic Policy Gradient [44.0762454494769]
Control design for robotic systems is complex and often requires solving an optimization to follow a trajectory accurately.
Online optimization approaches like Model Predictive Control (MPC) have been shown to achieve great tracking performance, but require high computing power.
We propose an Analytic Policy Gradient (APG) method to tackle this problem.
arXiv Detail & Related papers (2022-09-26T22:04:35Z) - Learning a Single Near-hover Position Controller for Vastly Different
Quadcopters [56.37274861303324]
This paper proposes an adaptive near-hover position controller for quadcopters.
It can be deployed to quadcopters of very different mass, size and motor constants.
It also shows rapid adaptation to unknown disturbances during runtime.
arXiv Detail & Related papers (2022-09-19T17:55:05Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
This paper presents a multi-layer motion planning and control architecture for autonomous racing.
The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s2$.
arXiv Detail & Related papers (2022-07-22T15:16:54Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - Control Design of Autonomous Drone Using Deep Learning Based Image
Understanding Techniques [1.0953917735844645]
This paper presents a new framework to use images as the inputs for the controller to have autonomous flight, considering the noisy indoor environment and uncertainties.
A new Proportional-Integral-Derivative-Accelerated (PIDA) control with a derivative filter is proposed to improve drone/quadcopter flight stability within a noisy environment.
arXiv Detail & Related papers (2020-04-27T15:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.